標籤: 暫無標籤

二極體又稱晶體二極體,簡稱二極體(diode);它只往一個方向傳送電流的電子零件。它是一種具有1個零件號接合的2個端子的器件,具有按照外加電壓的方向,使電流流動或不流動的性質。晶體二極體為一個由p型半導體和n型半導體形成的p-n結,在其界面處兩側形成空間電荷層,並建有自建電場。當不存在外加電壓時,由於p-n 結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處於電平衡狀態。

1 二極體 -名詞解釋

二極體二極體

二極體的特性與應用

二極體又稱晶體二極體,簡稱二極體(diode);它只往一個方向傳送電流的電子零件。它是一種具有1個零件號接合的2個端子的器件,具有按照外加電壓的方向,使電流流動或不流動的性質。晶體二極體為一個由p型半導體和n型半導體形成的p-n結,在其界面處兩側形成空間電荷層,並建有自建電場。當不存在外加電壓時,由於p-n 結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處於電平衡狀態。幾乎在所有的電子電路中,都要用到半導體二極體,它在許多的電路中起著重要的作用,它是誕生最早的半導體器件之一,其應用也非常廣泛。

二極體的工作原理

晶體二極體為一個由p型半導體和n型半導體形成的p-n結,在其界面處兩側形成空間電荷層,並建有自建電場。當不存在外加電壓時,由於p-n 結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處於電平衡狀態。當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓範圍內與反向偏置電壓值無關的反向飽和電流I0。當外加的反向電壓高到一定程度時,p-n結空間電荷層中的電場強度達到臨界值產生載流子的倍增過程,產生大量電子空穴對,產生了數值很大的反向擊穿電流,稱為二極體的擊穿現象。

二極體的類型

二極體種類有很多,按照所用的半導體材料,可分為鍺二極體(Ge管)和硅二極體(Si管)。根據其不同用途,可分為檢波二極體、整流二極體、穩壓二極體、開關二極體等。按照管芯結構,又可分為點接觸型二極體、面接觸型二極體及平面型二極體。點接觸型二極體是用一根很細的金屬絲壓在光潔的半導體晶片表面,通以脈衝電流,使觸絲一端與晶片牢固地燒結在一起,形成一個「PN結」。由於是點接觸,只允許通過較小的電流(不超過幾十毫安),適用於高頻小電流電路,如收音機的檢波等。面接觸型二極體的「PN結」面積較大,允許通過較大的電流(幾安到幾十安),主要用於把交流電變換成直流電的「整流」電路中。平面型二極體是一種特製的硅二極體,它不僅能通過較大的電流,而且性能穩定可靠,多用於開關、脈衝及高頻電路中。

二極體的導電特性

二極體最重要的特性就是單方嚮導電性。在電路中,電流只能從二極體的正極流入,負極流出。下面通過簡單的實驗說明二極體的正向特性和反向特性。

1.     正向特性。

在電子電路中,將二極體的正極接在高電位端,負極接在低電位端,二極體就會導通,這種連接方式,稱為正向偏置。必須說明,當加在二極體兩端的正向電壓很小時,二極體仍然不能導通,流過二極體的正向電流十分微弱。只有當正向電壓達到某一數值(這一數值稱為「門檻電壓」,鍺管約為0.2V,硅管約為0.6V)以後,二極體才能直正導通。導通后二極體兩端的電壓基本上保持不變(鍺管約為0.3V,硅管約為0.7V),稱為二極體的「正向壓降」。

2.     反向特性。

在電子電路中,二極體的正極接在低電位端,負極接在高電位端,此時二極體中幾乎沒有電流流過,此時二極體處於截止狀態,這種連接方式,稱為反向偏置。二極體處於反向偏置時,仍然會有微弱的反向電流流過二極體,稱為漏電流。當二極體兩端的反向電壓增大到某一數值,反向電流會急劇增大,二極體將失去單方嚮導電特性,這種狀態稱為二極體的擊穿。

3.      擊穿
外加反向電壓超過某一數值時,反向電流會突然增大,這種現象稱為電擊穿。引起電擊穿的臨界電壓稱為二極體反向擊穿電壓。電擊穿時二極體失去單嚮導電性。如果二極體沒有因電擊穿而引起過熱,則單嚮導電性不一定會被永久破壞,在撤除外加電壓后,其性能仍可恢復,否則二極體就損壞了。因而使用時應避免二極體外加的反向電壓過高。二極體是一種具有單嚮導電的二端器件,有電子二極體和晶體二極體之分,電子二極體現已很少見到,比較常見和常用的多是晶體二極體。二極體的單嚮導電特性,幾乎在所有的電子電路中,都要用到半導體二極體,它在許多的電路中起著重要的作用,它是誕生最早的半導體器件之一,其應用也非常廣泛。二極體的管壓降:硅二極體(不發光類型)正向管壓降0.7V,鍺管正向管壓降為0.3V,發光二極體正向管壓降為隨不同發光顏色而不同。主要有三種顏色,具體壓降參考值如下:紅色發光二極體的壓降為2.0--2.2V,黃色發光二極體的壓降為1.8—2.0V,綠色發光二極體的壓降為3.0—3.2V,正常發光時的額定電流約為20mA。二極體的電壓與電流不是線性關係,所以在將不同的二極體並聯的時候要接相適應的電阻。

4.二極體的特性曲線
與PN結一樣,二極體具有單嚮導電性。硅二極體典型伏安特性曲線(圖)。在二極體加有正向電壓,當電壓值較小時,電流極小;當電壓超過0.6V時,電流開始按指數規律增大,通常稱此為二極體的開啟電壓;當電壓達到約0.7V時,二極體處於完全導通狀態,通常稱此電壓為二極體的導通電壓,用符號UD表示。對於鍺二極體,開啟電壓為0.2V,導通電壓UD約為0.3V。在二極體加有反向電壓,當電壓值較小時,電流極小,其電流值為反向飽和電流IS。當反向電壓超過某個值時,電流開始急劇增大,稱之為反向擊穿,稱此電壓為二極體的反向擊穿電壓,用符號UBR表示。不同型號的二極體的擊穿電壓UBR值差別很大,從幾十伏到幾千伏。
5.二極體的反向擊穿
齊納擊穿 :反向擊穿按機理分為齊納擊穿和雪崩擊穿兩種情況。在高摻雜濃度的情況下,因勢壘區寬度很小,反向電壓較大時,破壞了勢壘區內共價鍵結構,使價電子脫離共價鍵束縛,產生電子-空穴對,致使電流急劇增大,這種擊穿稱為齊納擊穿。如果摻雜濃度較低,勢壘區寬度較寬,不容易產生齊納擊穿。   雪崩擊穿 :另一種擊穿為雪崩擊穿。當反向電壓增加到較大數值時,外加電場使電子漂移速度加快,從而與共價鍵中的價電子相碰撞,把價電子撞出共價鍵,產生新的電子-空穴對。新產生的電子-空穴被電場加速后又撞出其它價電子,載流子雪崩式地增加,致使電流急劇增加,這種擊穿稱為雪崩擊穿。無論哪種擊穿,若對其電流不加限制,都可能造成PN結永久性損壞。

二極體的主要參數

用來表示二極體的性能好壞和適用範圍的技術指標,稱為二極體的參數。不同類型的二極體有不同的特性參數。對初學者而言,必須了解以下幾個主要參數:

1、額定正向工作電流

是指二極體長期連續工作時允許通過的最大正向電流值。因為電流通過管子時會使管芯發熱,溫度上升,溫度超過容許限度(硅管為140左右,鍺管為90左右)時,就會使管芯過熱而損壞。所以,二極體使用中不要超過二極體額定正向工作電流值。例如,常用的IN4001-4007型鍺二極體的額定正向工作電流為1A。

2、最高反向工作電壓

加在二極體兩端的反向電壓高到一定值時,會將管子擊穿,失去單嚮導電能力。為了保證使用安全,規定了最高反向工作電壓值。例如,IN4001二極體反向耐壓為50V,IN4007反向耐壓為1000V。

3、反向電流

反向電流是指二極體在規定的溫度和最高反向電壓作用下,流過二極體的反向電流。反向電流越小,管子的單方嚮導電性能越好。值得注意的是反向電流與溫度有著密切的關係,大約溫度每升高10,反向電流增大一倍。例如2AP1型鍺二極體,在25時反向電流若為250uA,溫度升高到35,反向電流將上升到500uA,依此類推,在75時,它的反向電流已達8mA,不僅失去了單方嚮導電特性,還會使管子過熱而損壞。又如,2CP10型硅二極體,25時反向電流僅為5uA,溫度升高到75時,反向電流也不過160uA。故硅二極體比鍺二極體在高溫下具有較好的穩定性。

2 二極體 -晶體二極體


 晶體二極體
crystal diode

    固態電子器件中的半導體兩端器件。起源於19世紀末發現的點接觸二極體效應,發展於20世紀30年代,主要特徵是具有單嚮導電性,即整流特性。利用不同的半導體材料、摻雜分佈、幾何結構,可製成不同類型的二極體,用來產生、控制、接收、變換、放大信號和進行能量轉換。例如穩壓二極體可在電源電路中提供固定偏壓和進行過壓保護;雪崩二極體作為固體微波功率源,用於小型固體發射機中的發射源;半導體光電二極體能實現光-電能量的轉換,可用來探測光輻射信號;半導體發光二極體能實現電-光能量的轉換,可用作指示燈、文字-數字顯示、光耦合器件、光通信系統光源等;肖特基二極體可用於微波電路中的混頻、檢波、調製、超高速開關、倍頻和低雜訊參量放大等。
    分類
按用途分:檢波二極體、整流二極體、穩壓二極體、開關管、光電管。
按結構分:點接觸型二極體、面接觸型二極體
 

3 二極體 -激光二極體

一、激光的產生機理

二極體二極體

在講激光產生機理之前,先講一下受激輻射。在光輻射中存在三種輻射過程,

一時處於高能態的粒子在外來光的激發下向低能態躍遷,稱之為自發輻射;

二是處於高能態的粒子在外來光的激發下向低能態躍遷,稱之為受激輻射;

三是處於低能態的粒子吸收外來光的能量向高能態躍遷稱之為受激吸收。

自發輻射,即使是兩個同時從某一高能態向低能態躍遷的粒子,它們發出光的相位、偏振狀態、發射方向也可能不同,但受激輻射就不同,當位於高能態的粒子在外來光子的激發下向低能態躍遷,發出在頻率、相位、偏振狀態等方面與外來光子完全相同的光。在激光器中,發生的輻射就是受激輻射,它發出的激光在頻率、相位、偏振狀態等方面完全一樣。任何的受激發光系統,即有受激輻射,也有受激吸收,只有受激輻射佔優勢,才能把外來光放大而發出激光。而一般光源中都是受激吸收佔優勢,只有粒子的平衡態被打破,使高能態的粒子數大於低能態的粒子數(這樣情況稱為離子數反轉),才能發出激光。

產生激光的三個條件是:實現粒子數反轉、滿足閾值條件和諧振條件。產生光的受激發射的首要條件是粒子數反轉,在半導體中就是要把價帶內的電子抽運到導帶。為了獲得離子數反轉,通常採用重摻雜的P型和N型材料構成PN結,這樣,在外加電壓作用下,在結區附近就出現了離子數反轉—在高費米能級EFC以下導帶中貯存著電子,而在低費米能級EFV以上的價帶中貯存著空穴。實現粒子數反轉是產生激光的必要條件,但不是充分條件。要產生激光,還要有損耗極小的諧振腔,諧振腔的主要部分是兩個互相平行的反射鏡,激活物質所發出的受激輻射光在兩個反射鏡之間來回反射,不斷引起新的受激輻射,使其不斷被放大。只有受激輻射放大的增益大於激光器內的各種損耗,即滿足一定的閾值條件:

P1P2exp(2G - 2A) ≥ 1

(P1、P2是兩個反射鏡的反射率,G是激活介質的增益係數,A是介質的損耗係數,exp為常數),才能輸出穩定的激光,另一方面,激光在諧振腔內來回反射,只有這些光束兩兩之間在輸出端的相位差Δф =2qπ q=1、2、3、4。。。。時,才能在輸出端產生加強幹涉,輸出穩定激光。設諧振腔的長度為L,激活介質的折射率為N,則

Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ,

上式可化為f=qc/2NL該式稱為諧振條件,它表明諧振腔長度L和折射率N確定以後,只有某些特定頻率的光才能形成光振蕩,輸出穩定的激光。這說明諧振腔對輸出的激光有一定的選頻作用。

二、激光二極體本質上是一個半導體二極體,按照PN結材料是否相同,可以把激光二極體分為同質結、單異質結(SH)、雙異質結(DH)和量子阱(QW)激光二極體。量子阱激光二極體具有閾值電流低,輸出功率高的優點,是目前市場應用的主流產品。同激光器相比,激光二極體具有效率高、體積小、壽命長的優點,但其輸出功率小(一般小於2mW),線性差、單色性不太好,使其在有線電視系統中的應用受到很大限制,不能傳輸多頻道,高性能模擬信號。在雙向光接收機的回傳模塊中,上行發射一般都採用量子阱激光二極體作為光源。

半導體激光二極體的基本結構如圖所示,垂直於PN結面的一對平行平面構成法布里——珀羅諧振腔,它們可以是半導體晶體的解理面,也可以是經過拋光的平面。其餘兩側面則相對粗糙,用以消除主方向外其它方向的激光作用。

半導體中的光發射通常起因於載流子的複合。當半導體的PN結加有正向電壓時,會削弱pn結勢壘,迫使電子從N區經PN結注入P區,空穴從P區經過PN結注入N區,這些注入PN結附近的非平衡電子和空穴將會發生複合,從而發射出波長為λ的光子,其公式如下: 

λ = hc/Eg (1)

式中:h—普朗克常數; c—光速; Eg—半導體的禁帶寬度。

上述由於電子與空穴的自發複合而發光的現象稱為自發輻射。當自發輻射所產生的光子通過半導體時,一旦經過已發射的電子—空穴對附近,就能激勵二者複合,產生新光子,這種光子誘使已激發的載流子複合而發出新光子現象稱為受激輻射。如果注入電流足夠大,則會形成和熱平衡狀態相反的載流子分佈,即粒子數反轉。當有源層內的載流子在大量反轉情況下,少量自發輻射產生的光子由於諧振腔兩端面往複反射而產生感應輻射,造成選頻諧振正反饋,或者說對某一頻率具有增益。當增益大於吸收損耗時,就可從PN結髮出具有良好譜線的相干光——激光,這就是激光二極體的簡單原理。

隨著技術和工藝的發展,目前實際使用的半導體激光二極體具有複雜的多層結構。

      常用的激光二極體有兩種:①PIN光電二極體。它在收到光功率產生光電流時,會帶來量子雜訊。②雪崩光電二極體。它能夠提供內部放大,比PIN光電二極體的傳輸距離遠,但量子雜訊更大。為了獲得良好的信噪比,光檢測器件後面須連接低雜訊預放大器和主放大器。

      半導體激光二極體的工作原理,理論上與氣體激光器相同。

      激光二極體本質上是一個半導體二極體,按照PN結材料是否相同,可以把激光二極體分為同質結、單異質結(SH)、雙異質結(DH)和量子阱(QW)激光二極體。量子阱激光二極體具有閾值電流低,輸出功率高的優點,是目前市場應用的主流產品。同激光器相比,激光二極體具有效率高、體積小、壽命長的優點,但其輸出功率小(一般小於2mW),線性差、單色性不太好,使其在有線電視系統中的應用受到很大限制,不能傳輸多頻道,高性能模擬信號。在雙向光接收機的回傳模塊中,上行發射一般都採用量子阱激光二極體作為光源。

      半導體激光二極體的常用參數有: 
     (1)波長:即激光管工作波長,目前可作光電開關用的激光管波長有635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm等。 
    (2)閾值電流Ith :即激光管開始產生激光振蕩的電流,對一般小功率激光管而言,其值約在數十毫安,具有應變多量子阱結構的激光管閾值電流可低至10mA以下。 
    (3)工作電流Iop :即激光管達到額定輸出功率時的驅動電流,此值對於設計調試激光碟機動電路較重要。 
    (4)垂直發散角θ⊥:激光二極體的發光帶在垂直PN結方向張開的角度,一般在15˚~40˚左右。 
    (5)水平發散角θ∥:激光二極體的發光帶在與PN結平行方向所張開的角度,一般在6˚~ 10˚左右。 
    (6)監控電流Im :即激光管在額定輸出功率時,在PIN管上流過的電流。 

      激光二極體在計算機上的光碟驅動器,激光印表機中的列印頭等小功率光電設備中得到了廣泛的應用。

4 二極體 -發光二極體

二極體二極體

 發光二極體簡稱為LED。由鎵(Ga)與砷(AS)、磷(P)的化合物製成的二極體,當電子與空穴複合時能輻射出可見光,因而可以用來製成發光二極體,在電路及儀器中作為指示燈,或者組成文字或數字顯示。磷砷化鎵二極體發紅光,磷化鎵二極體發綠光,碳化硅二極體發黃光。

它是半導體二極體的一種,可以把電能轉化成光能;常簡寫為LED。發光二極體與普通二極體一樣是由一個PN結組成,也具有單嚮導電性。當給發光二極體加上正向電壓后,從P區注入到N區的空穴和由N區注入到P區的電子,在PN結附近數微米內分別與N區的電子和P區的空穴複合,產生自發輻射的熒光。不同的半導體材料中電子和空穴所處的能量狀態不同。當電子和空穴複合時釋放出的能量多少不同,釋放出的能量越多,則發出的光的波長越短。常用的是發紅光、綠光或黃光的二極體。

發光二極體的反向擊穿電壓約5伏。它的正向伏安特性曲線很陡,使用時必須串聯限流電阻以控制通過管子的電流。限流電阻R可用下式計算:

R=(F-UF)/IF

式中E為電源電壓,UF為LED的正向壓降,IF為LED的一般工作電流。發光二極體的兩根引線中較長的一根為正極,應按電源正極。有的發光二極體的兩根引線一樣長,但管殼上有一凸起的小舌,靠近小舌的引線是正極。

與小白熾燈泡和氖燈相比,發光二極體的特點是:工作電壓很低(有的僅一點幾伏);工作電流很小(有的僅零點幾毫安即可發光);抗衝擊和抗震性能好,可靠性高,壽命長;通過調製通過的電流強弱可以方便地調製發光的強弱。由於有這些特點,發光二極體在一些光電控制設備中用作光源,在許多電子設備中用作信號顯示器。把它的管心做成條狀,用7條條狀的發光管組成7段式半導體數碼管(圖),每個數碼管可顯示0~9十個數目字。

5 二極體 -微波二極體


工作在微波頻段的二極體。屬於固體微波器件。微波波段通常指頻率從300兆赫到3000吉赫。19世紀末發現了點接觸二極體效應后,相繼出現了PIN二極體、變容二極體、肖特基二極體、隧道二極體、耿氏二極體等微波二極體。微波二極體的基片材料由鍺、硅發展到砷化鎵,使微波二極體工作頻率不斷提高,目前最高頻率已達300吉赫。微波二極體具有體積小和可靠性高等優點,用於微波振蕩、放大、變頻、開關、移相和調製等方面。

6 二極體 -穩壓二極體


 穩壓二極體

voltage stabilizing diode

  

二極體二極體

     一種用於穩定電壓的單PN結二極體。它的伏安特性、電路符號如圖所示。結構同整流二極體。加在穩壓二極體的反向電壓增加到一定數值時,將可能有大量載流子隧穿PN結的位壘,形成大的反向電流,此時電壓基本不變,稱為隧道擊穿。當反向電壓比較高時,在位壘區內將可能產生大量載流子,受強電場作用形成大的反向電流,而電壓亦基本不變,為雪崩擊穿。因此,反向電壓臨近擊穿電壓時,反向電流迅速增加,而反向電壓幾乎不變。這個近似不變的電壓稱為齊納電壓(隧道擊穿)或雪崩電壓(雪崩擊穿)。

穩壓二極體工作於反向擊穿狀態(圖a)。反向電流在-IZK和-IZM之間時,二極體兩端的電壓基本不變,等於UZ,即為穩定電壓。對硅穩壓二極體而言,穩定電壓在5V以下的器件靠齊納電壓工作,穩定電壓在7V以上的器件靠雪崩電壓工作,兩者之間的器件兩種形式的擊穿都可能起作用。

  電流IZK是器件起穩壓作用的最小工作電流,而IZM則是最大可利用的齊納電流或雪崩電流,其值受穩壓二極體耗散功率的限制。IZ是相應於穩定電壓UZ的工作電流。最大工作電流的範圍從幾個毫安到幾十安。常用穩壓二極體的穩定電壓標稱值約在2~200V的範圍內。

7 二極體 -觸發二極體


 觸發二極體

二極體二極體
      

 觸發二極體(DIAC)屬三層結構,具有對稱性的二端半導體器件。常用來觸發雙向可控硅 ,在電路中作過壓保護等用途。

圖1是它的構造示意圖。圖2、圖3分別是它的符號及等效電路,可等效於基極開路、發射極與集電極對稱的NPN型晶體管。因此完全可用二隻NPN晶體管如圖4連接來替代。

雙向觸發二極體正、反向伏安特性幾乎完全對稱(見圖5)。當器件兩端所加電壓U低於正向轉折電壓V(B0)時,器件呈高阻態。當U>V(B0)時,管子擊穿導通進入負阻區。同樣當U大於反向轉折電壓V(BR)時,管子同樣能進入負阻區。轉折電壓的對稱性用△V(B)表示。△V(B)=V(B0)-V(BR)。一般△V(B)應小於2伏。雙向觸發二極體的正向轉折電壓值一般有三個等級:20-60V、100-150V、200-250V。由於轉折電壓都大於20V,可以用萬用表電阻擋正反向測雙向二極體,錶針均應不動(RX10k),但還不能完全確定它就是好的。檢測它的好壞,並能提供大於250V的直流電壓的電源,檢測時通過管子的電流不要大於是5mA。用晶體管耐壓測試器檢測十分方便。如沒有,可用兆歐表按圖6所示進行測量(正、反各一次),電壓大的一次V(BR)。例如:測一隻DB3型二極體,第一次為27.5V,反向後再測為28V,則△V(B)=V(B0)-V(BR)=28V-27.5V=0.5V<2V,表明該管對稱性很好。

圖7是雙向觸發二極體與雙向可控硅等元件構成的檯燈調光電路。通過調節電位器R2,可以改變雙向可控硅的導通角,從而改變通過燈泡的電流(平均值)實現連續調光。如果將燈泡換電熨斗、電熱褥還可實現連續調溫。

該電路在雙向可控硅加散熱器的情況下,可控負載功率可達500W,各元件參數見圖所標註。

8 二極體 -隧道二極體

二極體二極體

 又稱為江崎二極體,它是以隧道效應電流為主要電流分量的晶體二極體。隧道二極體是採用砷化鎵(GaAs)和銻化鎵(GaSb)等材料混合製成的半導體二極體,其優點是開關特性好,速度快、工作頻率高;缺點是熱穩定性較差。一般應用於某些開關電路或高頻振蕩等電路中。它的工作符合發生隧道效應具備的三個條件:①費米能級位於導帶和滿帶內;②空間電荷層寬度必須很窄(0.01微米以下);簡併半導體P型區和N型區中的空穴和電子在同一能級上有交疊的可能性。隧道二極體為雙端子有源器件。其主要參數有峰谷電流比(IP/PV),其中,下標"P"代表"峰";而下標"V"代表"谷"。簡單地說,所謂"隧道效應"就是指粒子通過一個勢能大於總能量的有限區域。這是一種量子力學現象, 按照經典力學是不可能出現的。隧道二極體可以被應用於低雜訊高頻放大器及高頻振蕩器中(其工作頻率可達毫米波段),也可以被應用於高速開關電路中。

9 二極體 -光敏二極體


光敏二極體也叫光電二極體。光敏二極體與半導體二極體在結構上是類似的,其管芯是一個具有光敏特徵的PN結,具有單嚮導電性,因此工作時需加上反向電壓。無光照時,有很小的飽和反向漏電流,即暗電流,此時光敏二極體截止。當受到光照時,飽和反向漏電流大大增加,形成光電流,它隨入射光強度的變化而變化。當光線照射PN結時,可以使PN結中產生電子一空穴對,使少數載流子的密度增加。這些載流子在反向電壓下漂移,使反向電流增加。因此可以利用光照強弱來改變電路中的電流現象。常見的有2CU、2DU等系列。

 二極體的種類很多,一般是根據二極體的性能命名的。

10 二極體 -識別


小功率二極體的N極(負極),在二極體外表大多採用一種色圈標出來,有些二極體也用二極體專用符號來表示P極(正極)或N極(負極),也有採用符號標誌為「P」、「N」來確定二極體極性的。發光二極體的正負極可從引腳長短來識別,長腳為正,短腳為負。用數字式萬用表去測二極體時,紅表筆接二極體的正極,黑表筆接二極體的負極,此時測得的阻值才是二極體的正嚮導通阻值,這與指針式萬用表的表筆接法剛好相反。半導體是一種具有特殊性質的物質,它不像導體一樣能夠完全導電,又不像絕緣體那樣不能導電,它介於兩者之間,所以稱為半導體。半導體最重要的兩種元素是硅(讀「gui」)和鍺(讀「zhe」)。我們常聽說的美國矽谷,就是因為起先那裡有好多家半導體廠商。二極體應該算是半導體器件家族中的元老了。很久以前,人們熱衷於裝配一種礦石收音機來收聽無線電廣播,這種礦石後來就被做成了晶體二極體。

相關評論

同義詞:暫無同義詞