用群論的方法來研究代數方程的解的理論。在19世紀末以前,解方程一直是代數學的中心問題。早在古巴比倫時代,人們就會解二次方程。在許多情況下,求解的方法就相當於給出解的公式。但是自覺地、系統地研究二次方程的一般解法並得到解的公式,是在公元9世紀的事。三次、四次方程的解法直到16世紀上半葉才得到。從此以後、數學家們轉向求解五次以上的方程。
經過兩個多世紀,一些著名的數學家,如歐拉、旺德蒙德、拉格朗日、魯菲尼等,都做了很多工作,但都未取得重大的進展。19世紀上半葉,阿貝爾受高斯處理二項方程 (p為素數)的方法的啟示,研究五次以上代數方程的求解問題,終於證明了五次以上的方程不能用根式求解。他還發現一類能用根式求解的特殊方程。這類方程現在稱為阿貝爾方程。阿貝爾還試圖研究出能用根式求解的方程的特性,由於他的早逝而未能完成這項工作。
伽羅瓦從1828年開始研究代數方程理論(當時他並不了解阿貝爾的工作),他試圖找出為
伽羅瓦

  伽羅瓦

了使一個方程存在根式解,其係數所應滿足的充分和必要條件。到1832年他完全解決了這個問題。在他臨死的前夜,他將結果寫在一封信中,留給他的一位朋友。1846年他的手稿才公開發表。伽羅瓦完全解決了高次方程的求解問題,他建立於用根式構造代數方程的根的一般原理,這個原理是用方程的根的某種置換群的結構來描述的,後人稱之為「伽羅瓦理論」。伽羅瓦理論的建立,不僅完成了由拉格朗日、魯菲尼、阿貝爾等人開始的研究,而且為開闢抽象代數學的道路建立了不朽的業績。
在幾乎整整一個世紀中,伽羅瓦的思想對代數學的發展起了決定性的影響。伽羅瓦理論被擴充並推廣到很多方向。戴德金曾把伽羅瓦的結果解釋為關於域的自同構群的對偶定理。隨著20世紀20年代拓撲代數系概念的形成,德國數學家克魯爾推廣了戴德金的思想,建立了無限代數擴張的伽羅瓦理論。伽羅瓦理論發展的另一條路線,也是由戴德金開創的,即建立非交換環的伽羅瓦理論。1940年前後,美國數學家雅各布森開始研究非交換環的伽羅瓦理論,並成功地建立了交換域的一般伽羅瓦理論。伽羅瓦理論還特別對尺規作圖問題給出完全的刻畫。人們已經證明:這種作圖問題可歸結為解有理數域上的某些代數方程。這樣一來,一個用直尺和圓規作圖的問題是否可解,就轉化為研究相應方程的伽羅瓦群的性質。

相關評論

同義詞:暫無同義詞