標籤:輻射伽馬射線

伽瑪射線暴(Gamma Ray Burst, 縮寫GRB),又稱伽瑪暴,是來自天空中某一方向的伽瑪射線強度在短時間內突然增強,隨後又迅速減弱的現象,持續時間在0.1-1000秒,輻射主要集中在0.1-100 MeV的能段。伽瑪暴發現於1967年,數十年來,人們對其本質了解得還不很清楚,但基本可以確定是發生在宇宙學尺度上的恆星級天體中的爆發過程。伽瑪暴是目前天文學中最活躍的研究領域之一,曾在1997年和1999年兩度被美國《科學》雜誌評為年度十大科技進展之列。

1概述

基本簡介
伽馬射線暴簡稱為「伽馬暴」,是宇宙中伽馬射線突然增強的一種現象。伽馬射線是波
伽馬射線暴

  伽馬射線暴

長小於0.01納米的電磁波,是比X射線能量還高的一種輻射,伽馬射線暴的能量非常高,所釋放的能量甚至可以和宇宙大爆炸相提並論,但是持續時間很短,長的一般為幾十秒,短的只有十分之幾秒,而且它的亮度變化也是複雜而且無規律的。
伽馬射線暴(GRBs)可以分為兩種截然不同的類型,長久以來,天文學家們一直懷疑它們是由兩種不同的原因產生的。更常見的長伽馬暴(持續2秒到幾分鐘不等)差不多已經被解釋清楚了。在此圖景中,它們是在一顆高溫、超大質量的沃爾夫·拉葉星(Wolf-Rayet star)坍縮形成黑洞時產生的。
伽馬射線-內部結構模型圖

  伽馬射線-內部結構模型圖

雖然短伽馬射線暴一瞬即逝,自2011年在「雨燕望遠鏡」每年可以捕捉到10次短伽馬射線暴,為我們的研究提供了非常寶貴的資料來源。我們的研究認為,短伽馬射線暴可能來源於一個雙星體系的兩顆恆星的合併以及一個黑洞的同時產生。
伽馬射線暴的能源機制至今依然遠未解決,這也是伽馬射線暴研究的核心問題。隨著技術的進步,人類對宇宙的認識也將更加深入,很多現在看來還是個謎的問題也許未來就會被解決,探索宇宙的奧秘不但是人類追求科學進步的必要,這些謎團的解開也終將會使人類自身受益。

物理髮現

伽馬射線暴是1967年美國Vela衛星在核爆炸監測過程中由克萊貝薩德爾(Klebesadel)等人無意中發現的。
恆星的誕生和老恆星的死亡是聯繫在一起的。超大質量恆星迅速老化、爆炸,散發出的星際塵埃快速充斥於星雲之中,超大質量爆炸產生的新物質也被噴發進星雲之中,星雲密度變得很大,孕育新的恆星誕生。在充斥著星際塵埃的星系,大量的恆星生死輪迴正在發生著。由於恆星形成於星際塵埃區域,可推測包裹黑暗伽馬射線暴的塵埃團可能是孕育恆星的誕生之地。
冷戰時期,美國發射了一系列的軍事衛星來監測全球的核爆炸試驗,在這些衛星上安裝有伽馬射線探測器,用於監視核爆炸所產生的大量的高能射線。偵察衛星在1967年發現了來自浩瀚
伽馬射線暴

  伽馬射線暴

宇宙空間的伽馬射線在短時間內突然增強的現象,人們稱之為「伽馬射線暴」。由於軍事保密等因素,這個發現直到1973年才公布出來。這是一種讓天文學家感到困惑的現象:一些伽馬射線源會突然出現幾秒鐘,然後消失。這種爆發釋放能量的功率非常高。一次伽馬射線暴的「亮度」相當於全天所有伽馬射線源「亮度」的總和。隨後,不斷有高能天文衛星對伽馬射線暴進行監視,差不多每天都能觀測到一兩次的伽馬射線暴。
至今人們已經觀測到了2000多個伽馬暴。

2分類

伽瑪暴有兩類,短暴(小於2秒)與長暴(大於2秒)。
長暴被普遍認為是「超新星的類似物」,標誌著50至100倍於太陽的恆星的毀滅性爆發。當這樣一顆龐大的恆星爆炸時,它會留下一個黑洞,並將這一信息以伽瑪射線的形式掃過宇宙。內在的物理機制首先由加州大學的物理學家Stan Woosley博士提出並發展成形,而他的「坍縮星」模型被認為是解釋長暴的主流理論。
短暴更為讓人迷惑。它們的起落時間非常短,不會是超新星,而爆發的能量並不足以構成恆星的爆發。許多研究者認為,它們是由超緻密的中子星(可能也是中子星與黑洞)碰撞產生的。兩種情況都會產生另一個黑洞。然而陪審團仍舊缺席,而研討會上的辯論必然是活躍的。

3主要特徵

伽瑪射線暴的持續時間一般在0.1秒到1000秒左右,以2秒為界,大致可

伽馬射線

伽馬射線
以分為長暴和短暴兩類,典型的持續時間分別為30秒和0.3秒。時變的輪廓比較複雜,往往具有多峰的結構。伽瑪射線暴在天空中的分佈是各向同性的,但遠距離的伽瑪射線暴明顯少於近距離的,顯示出非均勻各向同性,可以被膨脹宇宙學模型所支持,表明伽瑪射線暴是發生在宇宙學距離上的。
伽瑪射線暴爆發過後會在其它波段觀測到輻射,稱為伽瑪射線暴的餘輝。根據波段不同可分為X射線餘輝、光學餘輝、射電餘輝等。餘輝通常是隨時間而指數式衰減的,X射線餘輝能夠持續幾個星期,光學餘輝和射電餘輝能夠持續幾個月到一年。

4原因

伽馬射線暴

伽馬射線暴
關於伽瑪射線暴的成因,有人猜測它是兩個緻密天體如中子星或黑洞的合併產生的,也有觀點認為它是在大質量恆星演化為黑洞的過程中產生的。
1998年發現伽瑪暴GRB 980425與一個超新星SN Ib/Ic 1998bw 相關聯。這是一個重要的發現,暗示伽瑪暴的成因可能是大質量恆星的死亡。2002年,一個英國的研究小組研究了由XMM-牛頓衛星對2001年12月的一次伽瑪暴的長達270秒的X射線餘輝的觀測資料,發現了伽瑪暴與超新星有關的證據,發表在2002年的《自然》雜誌上。進一步的研究揭示,普通的超新星爆發有可能在幾周到幾個月之內導致伽瑪射線暴。大質量恆星的死亡會產生伽瑪暴這一觀點已經得到普遍認同。
爆發歷史
一、星際塵埃吸收伽馬射線暴可見光,2009年6月8日,在美國天文學學會會議上美國加州大學伯克利分校丹尼爾-珀利(Daniel Perley)說:「我們相信已經揭開了黑暗伽馬射線暴的成因之謎。」他和同事們通過加州帕洛馬天文台直徑60英寸的望遠鏡發現「雨燕」探測衛星曾觀測的29個伽馬射線暴中14個是黑暗的,無法觀測到可見光波。他們進一步通過夏威夷凱克天文台的10米望遠鏡進行觀測,結果顯示它們並不是完全處於黑暗狀態。這14個黑暗伽馬射線暴中有3個透出微弱光線,像昏暗的餘暉,其餘的11個伽馬
星系

  星系

射線暴雖然處於黑暗狀態,但是研究小組發現了導致伽馬射線暴產生的強烈爆炸所在的星系。這說明這些伽馬射線暴產生的星系距離地球不會超過129億光年,因為這已經接近了人類宇宙觀測的極限。而且如果距離超過129億光年,任何可探測的光波都會發生多普勒紅移。
幾次特別的伽馬射線暴
1997年12月14日發生一次伽馬射線暴,它距離地球遠達120億光年,所釋放的能量比超新星爆發還要大幾百倍,在50秒內所釋放出伽馬射線能量就相當於整個銀河系200年的總輻射能量。這次伽馬射線暴持續時間在一兩秒內,其亮度與除它以外的整個宇宙一樣明亮。
1999年1月23日發生的伽馬射線暴比這次更加猛烈,它所放出的能量是1997年那次的十倍,這也是人類迄今為止已知的最強大的伽馬射線暴。
在2009年4月23日,天文學家曾觀測到迄今最遙遠的伽馬射線暴,它距離地球131億光年,也是人類觀測到的最遙遠天體,導致該伽馬射線暴發生的強烈爆炸發生在宇宙起源后不到7億年時。研究小組評估稱,黑暗伽馬射線暴在宇宙早期階段所有伽馬射線暴中只佔0.2%到0.7%,這也說明宇宙起源早期並沒有發生非常多的恆星形成現象。
科學家最新研究稱,地球在公元8世紀時曾遭受宇宙中迄今已知的最強大的爆炸—伽瑪射線爆發的洗禮。此項研究的研究報告發表在了最新一期的國際著名天文刊物《皇家天文學會月報》(Monthly Notices of the Royal Astronomical Society)上。
二、研究人員在2012年發現的證據表明,我們的地球曾在中世紀被一陣輻射擊中,但一直不清楚到底發生了什麼樣的宇宙事件。2012年,一項最新的研究表明,當時銀河系發生了兩個黑洞或兩顆中子星合併的現象。合併僅在數秒鐘內發生,但它們釋放出了大量的輻射波和能量。此項研究的負責人、德國耶拿大學天體物理學協會的教授拉爾夫·紐豪瑟(Ralph Neuhauser)說:「伽瑪射線爆發是非常有爆發力的活動,我們的研究表明,能量來自3000至12000光年遠,這在我們的銀河系範圍內。」
2011年,一個研究小組在日本發現,一些古老的雪松樹上有一種不同尋常的放射性碳,被稱為碳14。研究人員還在南極冰蓋上發現了放射性鈹—鈹10。這些同位素產生於強烈的輻射衝擊上層大氣中的原子時,這表明,來自太空的能量爆發曾經衝擊過我們的地球。根據樹木年輪和冰的數據,研究人員能夠確定,這一事件發生於公元774年和公元775期間。
伽馬射線的閃電模擬
天文學家的以前說法:可能是由於這種伽馬射線暴距離太遠,無法在視覺波長範圍內觀測。最新一項研究揭示了其中的奧秘,星際塵埃吸收了幾乎全部的可見光,但能量更高的伽馬射線和X射線卻能穿透星際塵埃,被地球上的望遠鏡捕捉到。 伽馬射線暴不過大質量恆星的死亡會產生伽馬暴這一觀點已經得到普遍認同。天文學家認為,其中的大多數伽馬暴是在超大質量恆星耗盡核燃料時發生的。當恆星的核心坍縮為黑洞后,物質噴流以接近光速的速度向外衝出。噴流從坍縮星涌過,繼續向宇宙空間行進,並與先前被恆星照耀的氣體相互作用,產生隨著時間衰減的明亮餘輝。多數伽馬射線將在可見光範圍內呈現出明亮光線。然而一些伽馬射線暴卻是黑暗狀態,它們在光學望遠鏡中無法探測到。最新一項研究顯示,黑暗伽馬射線暴實際上並不是由於距離遙遠而無法觀測,它們無法釋放光線是由於被星際塵埃吸收了大部分的可見光,這些星際塵埃團可能是恆星孕育誕生地。
曾經引發4億年前生物大滅絕。它可能產生於雷,也參與閃電的形成旱新的研究表明,雷中釋放出的伽馬射線可能才是閃電形成的主要原關於雷電島×馬射線可能是閃電形成的主要原因。這個猜想.2008年前佛羅里達技術協因。康普頓伽馬射線天文台在上世紀會的天體物理學家約瑟夫-德懷爾就90年代早期就從地面的雷電中發現了提出了。伽馬射線。當時德懷爾從一些相關的學術報告伽馬射線是波長小於0.1納米的電中發現伽馬射線和閃電有關係,為了證磁波,輻射能量比x射線還高。伽馬射明這一關係,他建立了一個高能量輻射線在短期內突然增強就會形成射線暴.模型用來描述地球大氣層電場的形成。 其能量釋放相當於宇宙大爆炸。伽馬射結果發現,這些在電場中的伽馬射線釋線暴形成的原因,到底是由兩個中子星放的高速電子與大氣層其他微粒發生碰碰撞時產生的還是大質量恆星在死亡撞,可以產生強大的雷
伽馬射線暴

  伽馬射線暴

鳴聲.同時釋放時生成黑洞的過程中產生的.至今都沒出電荷。在雷雨天氣中.上升氣流和下有定論。但有一點是科學家們都承認的,降氣流推動水分子互相作用.電場強度那就是在有巨大的宇宙能量產生時,比增大,最終釋放出的電子以接近光速的如雷暴產生的過程中.會產生伽馬射線.速度穿越空氣。
雖然當時德懷爾的猜想神秘的閃電可能是由雷暴釋放的伽馬射線形成的。自然也就僅限於猜想而已.最終並沒有形成定論。真正可以模擬並最鄰近伽馬射線形成閃電模擬的.是2012年日本東京理工大學和日本物理和化學研究所聯合的一次研究。這個研究組派出一支伽馬射線研究分隊,到日本海的低空中觀察在雷電中形成的伽馬射線。

5點亮夜空

美國宇航局最新研究顯示,地球曾被50萬光年之遙的強烈「巨大耀斑」瞬間照射。這種強大的能量脈衝束照亮了地球大氣層。它源自於銀河系對面一顆中子星的龐大磁場,中子星也被稱為「軟伽馬射線中繼器」,通常噴射低能量伽馬射線,但有時其磁場重新排列時會釋放巨大的能量束。這種能量束可穿越太空導致數千顆人造衛星出現故障,使地球頂端大氣層電離化。據美國宇航局稱,這種獨特的伽馬射線束非常強烈,比滿月更加明亮,甚至比迄今太陽系外勘測的任何天體都明亮。
這一令人難以置信的伽馬射線噴發發生於2004年12月27日,是由中子星SGR 1806-20釋放的脈衝束。美國洛斯-阿拉莫斯國家實驗室的大衛-帕默博士說:「這可能是天文學家一生中難得一見的天文現象,同時也是一種非常罕見的中子星事件。在過去35年裡,我們僅探測到其它兩次太陽系外大型耀斑噴射事件,而中子星SGR 1806-20釋放的伽馬射線束的強度是前者的數百倍。」該伽馬射線能量束並不會對地球構成威脅,這是由於中子星SGR 1806-20距離地球非常遙遠,但如果中子星距離地球較近的話,將對地球構成致命的傷害。 如果中子星距離地球僅有十幾光年,將會出現嚴重的破壞性。天文學家認為宇宙中存在大量的中子星,位銀河系內的中子星能量相對較低。 科學家指出,2008年3月19日,GRB 080319B恆星將瞄準地球釋
伽馬射線暴

  伽馬射線暴

放強烈的耀斑。該伽馬射線束非常明亮,人類肉眼也可觀看到。美國馬薩諸塞州哈佛史密遜森天體物理學研究中心的布賴恩-加恩斯勒說:「之後最大的太陽系內伽馬射線『巨大耀斑』與2004年12月27日出現的伽馬射線耀斑事件相比,則顯得微不足道。」

6觀測揭示

伽馬暴發生在宇宙6億3千萬歲的時候,直接證實嬰兒宇宙中活躍著爆發的恆星和新誕生的黑洞。「這個新發現的伽馬暴打破了所有的紀錄,」Berger說。「它輕易地超越了最遙遠的星系和類星體。實際上,它表明,我們可以利用這些壯觀的事件來找到第一代恆星和星系。」
一旦大質量恆星的核燃料用盡,塌縮成一個黑洞或者中子星,通過恆星在生命終點排出的氣體外殼噴發出氣體噴流,典型的伽馬射線暴就發生了。這些噴流加熱氣體,產生在其它波段觀測到的短暫餘輝。「爆發的餘輝提供我們關於爆發恆星和其環境的很多信息,」Leicester大學的Nial Tanvir說。「但是因為餘輝消逝得如此快,我們必須快速瞄準並定位它們。」
Tanvir和同事們在三個小時的爆發時間內,用夏威夷莫納克亞的英國紅外望遠鏡探測了一個紅外源。同時,賓州大學的Berger和Derek Fox用莫納克亞的雙子北望遠鏡得到了餘輝的紅外影像。
天文學家注意到,該源在最長波段的影像中存在,但是在最短的微米波長的影像中不存在。這一「缺失」對應的精確距離為130.35億光年,或者紅移為8.2,使得它成為人類迄今看到的最遙遠的天體。前紀錄保持者是去年九月才發現的,它的紅移為6.7,或者1億9千萬光年,GRB 090423顯然成為新的領跑者。
中新網1月23日電 據外媒報道,科學家發現一場神秘的短伽馬射線暴產生的高能輻射可能襲擊了公元八世紀的地球。如果同樣的情形發生在現代,可能造成衛星毀損,甚至破壞地球臭氧層,對地球生物造成毀滅性的影響。
在2012年,科學家宣布在古樹木年輪中檢測到高水平的碳14同位素和鈹-10含量,而這些古樹木形成於公元775年,這項發現暗示了在公元774年或者公元775年發生了宇宙高能輻射襲擊地球的事件。當來自宇宙空間的高能輻射與高空大氣中的原子發生碰撞后,便形成了碳14和鈹-10。
通過研究,科學家們排除了距離太陽系較近的超新星爆發的可能性,這是因為人們並沒有記錄下天空中出現的異常現象,而且現代天文學沒有觀測到可能的天體殘骸。
由此,科學家提出了另一種解釋,認為這次宇宙高能輻射襲擊地球可能源於兩個天體發生的合併事件。當這種情況發生時,就會釋放一些伽馬射線,天體的合併伴隨著短暫而強烈的伽馬暴,但是在可見光波段上可能沒有任何跡象。
科學家還指出,此類天體事件距離太陽不會低於3000光年,因為少於這個距離發生的強伽馬暴和天體能量釋放就可以導致地球生命滅絕。天文學家也在尋找這個神秘的宇宙天體碰撞殘骸,可能是一個僅1200年歷史的黑洞,或者3000至1.2萬光年處的中子星等。
科學家表示,近期內地球不太可能再遇到一次同樣的情況,但若這種情形再度發生,外太空的現代人造衛星將首當其衝受到影響,高能輻射還會造成地面通訊、氣象研究中心癱瘓。而如果強伽馬暴距離地球更近的話,輻射威力將足以摧毀臭氧層,這會對地球上的生命造成毀滅性的影響。

相關評論

同義詞:暫無同義詞