標籤: 暫無標籤

圍繞位數碼和,有著許多有趣的數論問題。 國內外有許多人從事這方面的研究,比如Cooper的許多文章。位數碼和與概率論和編碼理論有著密切聯繫。此外它還和著名的黎曼Zeta函數有著深刻的關係。 對位數碼和的研究方法也多種多樣,即可以是初等數學的方法,也可以是解析數論或者代數數論的方法。

 

1 位數碼和 -概念

設n是一個非負整數。 它在p進位下表示為n=a_kp^k+a_p^+...+a_1p+a_0, 此處 a_i是小於p的非負整數。  我們記 s_p(n)=a_+a_【k-1}+...+a_1+a_0.
s_p(n) 被稱為n在p進位下的位數碼和。



2 位數碼和 -簡介

圍繞位數碼和,有著許多有趣的數論問題。  國內外有許多人從事這方面的研究,比如Cooper的許多文章。位數碼和與概率論和編碼理論有著密切聯繫。此外它還和著名的黎曼Zeta函數有著深刻的關係。

對位數碼和的研究方法也多種多樣,即可以是初等數學的方法,也可以是解析數論或者代數數論的方法。


關於位數碼和的第一個深刻結果,是由Delange 得到。 他證明了下面的結論:

(Delange定理): s_10(1)+s_10(2)+...+s_10(n)= 9/2 (nlog_10 n) +n F(log_10 n),
此處 $F(x)$ 是一個周期為1的處處不可微的連續函數。

函數 F(x) 實際上可以用黎曼Zeta函數構造出來。 這一結果反應了某種概率分佈規律。 Erdos 曾經研究過這一類的概率問題。 有興趣的朋友可以參看「數論導引」講一致分佈的那一章。




上一篇[棄九演算法]    下一篇 [九進位]

相關評論

同義詞:暫無同義詞