標籤: 暫無標籤

傳遞函數 transfer function 零初始條件下線性系統響應(即輸出)量的拉普拉斯變換(或z變換)與激勵(即輸入)量的拉普拉斯變換之比。記作G(s)=Y(s)/U(s),其中Y(s)、U(s)分別為輸出量和輸入量的拉普拉斯變換。傳遞函數是描述線性系統動態特性的基本數學工具之一,經典控制理論的主要研究方法——頻率響應法和根軌跡法——都是建立在傳遞函數的基礎之上。

1簡介

傳遞函數

傳遞函數
系統的傳遞函數與描述其運動規律的微分方程是對應的。可根據組成系統各單元的傳遞函數和它們之間的聯結關係導出整體系統的傳遞函數,並用它分析系統的動態特性、穩定性,或根據給定要求綜合控制系統,設計滿意的控制器。以傳遞函數為工具分析和綜合控制系統的方法稱為頻域法。它不但是經典控制理論的基礎,而且在以時域方法為基礎的現代控制理論發展過程中,也不斷發展形成了多變數頻域控制理論,成為研究多變數控制系統的有力工具。傳遞函數中的復變數s在實部為零、虛部為角頻率時就是頻率響應。
傳遞函數是《積分變換》里的概念。
對復參數s,函數f(t)*e^(-st)在(-∞,+∞)的積分,稱為函數f(t)的(雙邊)拉普拉斯變換,簡稱拉氏變換(如果是在[0,+∞)內積分,則稱為單邊拉普拉斯變換,記作F(s),這是個複變函數。
設一個系統的輸入函數為x(t),輸出函數為y(t),則y(t)的拉氏變換Y(s)與x(t)的拉氏變換X(s)的商:W(s)=Y(s)/X(s)稱為這個系統的傳遞函數。
傳遞函數是由系統的本質特性確定的,與輸入量無關。知道傳遞函數以後,就可以由輸入量求輸出量,或者根據需要的輸出量確定輸入量了。
傳遞函數的概念在自動控制理論里有重要應用。

2常識

傳遞函數概念的適用範圍限於線性常微分方程系統.當然,在這類系統的分析和設計中,傳遞函數方法的應用是很廣泛的。下面是有關傳遞函數的一些重要說明(下列各項說明中涉及的均為線性常微分方程描述的系統):
1. 系統的傳遞函數是一種數學模型,它表示聯繫輸出變數與輸入變數的微分方程的一種運算方法;
2. 傳遞函數是系統本身的一種屬性,它與輸入量或驅動函數的大小和性質無關;
3. 傳遞函數包含聯繫輸入量與輸出量所必需的單位,但是它不提供有關係統物理結構的任何信息(許多物理上完全不同的系統,可以具有相同的傳遞函數,稱之為相似系統);
4. 如果系統的傳遞函數已知,則可以針對各種不同形式的輸入量研究系統的輸出或響應,以便掌握系統的性質;
5. 如果不知道系統的傳遞函數,則可通過引入已知輸入量並研究系統輸出量的實驗方法,確定系統的傳遞函數.系統的傳遞函數一旦被確定,就能對系統的動態特性進行充分描述,它不同於對系統的物理描述;
6. 用傳遞函數表示的常用連續系統有兩種比較常用的數學模型。

3性質

1、傳遞函數是一種數學模型,與系統的微分方程相對應。
2、是系統本身的一種屬性,與輸入量的大小和性質無關。
3、只適用於線性定常系統。
4、傳遞函數是單變數系統描述,外部描述。
5、傳遞函數是在零初始條件下定義的,不能反映在非零初始條件下系統的運動情況。
6、一般為復變數 S 的有理分式,即 n ≧ m。且所有的係數均為實數。
7、如果傳遞函數已知,則可針對各種不同形式的輸入量研究系統的輸出或響應。
8、如果傳遞函數未知,則可通過引入已知輸入量並研究系統輸出量的實驗方法,確定系統的傳遞函數。
9、傳遞函數與脈衝響應函數一一對應,脈衝響應函數是指系統在單位脈衝輸入量作用下的輸出。

4特性

傳遞函數transfer function
把具有線性特性的對象的輸入與輸出間的關係,用一個函數(輸出波形的拉普拉斯變換與輸入波形的拉普拉斯變換之比)來表示的,稱為傳遞函數。原是控制工程學的用語,在生理學上往往用來表述心臟、呼吸器官、瞳孔等的特性。

5極點和零點

系統傳遞函數G(s)的特徵可由其極點和零點在s複數平面上的分佈來完全決定。用D(s)代表G(s)的分母多項式,M(s)代表G(s)的分子多項式,則傳遞函數G(s)的極點規定為特徵方程D(s)=0的根,傳遞函數G(s)的零點規定為方程M(s)=0的根。極點(零點)的值可以是實數和複數,而當它們為複數時必以共軛對的形式出現,所以它們在s複數平面上的分佈必定是對稱於實數軸(橫軸)的。系統過渡過程的形態與其傳遞函數極點、零點(尤其是極點)的分佈位置有密切的關係。

6應用

傳遞函數主要應用在三個方面。
1、 確定系統的輸出響應。對於傳遞函數G(s)已知的系統,在輸入作用u(s)給定后,系統的輸出響應y(s)可直接由G(s)U(s)運用拉普拉斯反變換方法來定出。
2、分析系統參數變化對輸出響應的影響。對於閉環控制系統,運用根軌跡法可方便地分析系統開環增益的變化對閉環傳遞函數極點、零點位置的影響,從而可進一步估計對輸出響應的影響。
3、用於控制系統的設計。直接由系統開環傳遞函數進行設計時,採用根軌跡法。根據頻率響應來設計時,採用頻率響應法。

7局限性

1960年以來關於能控性和能觀測性的研究表明,傳遞函數只是對系統內部結構的一種不完全的描述,只能表徵其中直接或間接地由輸入可控制和從輸出中可觀測到的那一部分。引入狀態空間描述(見狀態空間法),可彌補這種缺陷。
上一篇[鬥志]    下一篇 [成本費用]

相關評論

同義詞:暫無同義詞