標籤: 暫無標籤

光化學是研究光與物質相互作用所引起的永久性化學效應的化學分支學科。由於歷史的和實驗技術方面的原因,光化學所涉及的光的波長範圍為 100~1000納米,即由紫外至近紅外波段。比紫外波長更短的電磁輻射,如X或γ射線所引起的光電離和有關化學屬於輻射化學的範疇。至於遠紅外或波長更長的電磁波,一般認為其光子能量不足以引起光化學過程,因此不屬於光化學的研究範疇。觀察到有些化學反應可以由高功率的紅外激光所引發,但將其歸屬於紅外激光化學的範疇。

1光化學定律

光化學第二定律
愛因斯坦在1905年提出,在初級光化學反應過程中,被活化的分子數(或原子數)等於吸收光的量子數,或者說分子對光的吸收是單光子過程(電子激發態分子壽命很短,吸收第二個分子的幾率很小),即光化學反應的初級過程是由分子吸收光子開始的,此定律又稱為Einstein光化當量定律。
E=hv= hc/λ
λ——光量子波長
h ——普朗克常數
c——光速
E=N0hv= N0hc/λ
N0——阿伏加德羅常數
Λ=400nm,E=299.1kJ/mol  Λ=700nm,E=170.9kJ/mol
由於通常化學鍵的鍵能大於167.4kJ/mol,所以波長大於700nm的光就不能引起光化學離解。

2分類

美國ace glass 光化學反應系統光化學過程可分為初級過程和次級過程。初級
1

  1

過程是分子吸收光子使電子激發,分子由基態提升到激發態,激發態分子的壽命一般較短。光化學主要與低激發態有關,激發態分子可能發生解離或與相鄰的分子反應,也可能過渡到一個新的激發態上去,這些都屬於初級過程,其後發生的任何過程均稱為次級過程。例如氧分子光解生成兩個氧原子,是其初級過程;氧原子和氧分子結合為臭氧的反應則是次級過程,這就是高空大氣層形成臭氧層的光化學過程。分子處於激發態時,由於電子激發可引起分子中價鍵結合方式的改變,使得激發態分子的幾何構型、酸度、顏色、反應活性或反應機理可能和基態時有很大的差別,因此光化學反應比熱化學反應更加豐富多彩。
光化學反應已經廣泛用於合成化學,由於吸收給定波長的光子往往是分子中某個基團的性質,所以光化學提供了使分子中某特定位置發生反應的最佳手段,對於那些熱化學反應缺乏選擇性或反應物可能被破壞的體系,光化學反應更為可貴。大氣污染過程也包含著極其豐富而複雜的光化學過程,例如氟里昂等氟碳化物在高空大氣中光解產物可能破壞臭氧層,產生臭氧層「空洞」。

3內容

量子產率
也叫量子效率或量子產額。是光化學重要的基本量之一。設反應為A hv→B,初級過程的量子產率定義為:
如果激發態的A分子在變成為B的同時,還平行地發生著其他光化學和光物理過程,那麼這個初級過程的量子產率將受到其他競爭的平行過程的「量子產率」的影響。由於在一般光強條件下,每個分子只能吸收1個光子,所以所有初級過程的量子產率的總和應等於1。
量子效率的測定有絕對測定法與相對測定法。相對法指與一種其絕對量產率為已知的體系相比較的方法。絕對法則要求直接建立起反應的量子產率和波長、溫度、光強以及各種離子(特別是氫離子)濃度間的函數關係。現在已經研究過的這類體系有氣體體系(如一氧化二氮、二氧化碳、溴化氫、丙酮等);液相體系(如草酸鐵(Ⅲ)鉀溶液、草酸鈾醯溶液、二苯酮-二苯甲醇、2-己酮、偶氮苯、苯甲酸等〕;固相體系(如硝基苯甲醛、二苯酮-二苯甲醇等)。這些方法所用的儀器統稱為化學露光計。
分子重排反應
原子從分子中的一處移向他處的反應稱為分子重排反應。許多有機分子在光激發后發生的重排過程也屬於次級步驟。如苯經光激發后變為亞甲基環戊二烯的反應:
第一步只是苯環中6個比較自由的共軛 π電子的激發(一般只激發1個電子),這對苯分子中的碳氫鍵影響不大;而在次級步驟中由於原子的重排,生成了結構完全不同的產物。
有時,初級光化學過程可用作研究次級反應的工具,光敏化反應就屬於這類情況。如汞原子能有效地吸收汞燈發射的光而被激發,然後通過與其他分子的碰撞,傳遞所吸收的能量。例如:
Hg+hv─→Hg*
Hg*+N2O─→Hg+N2+O
氧原子可以和體系中存在的其他物質反應,從釋放出來的氮氣量可以計算出所產生的氧原子數量。
如果初級光化學步驟是分子光解成兩個自由基(有單個或未配對電子的分子碎片),通常,其次級步驟為鏈反應。氫與氯的反應是已經熟知的例子,其過程為:
hv+Cl2─→2Cl
Cl+H2─→HCl+H
H+Cl2─→HCl+Cl
在鏈反應中,每個量子可以產生多個產物分子,因此這類反應的總量子產率不僅可能大於1,有時可以達到幾百甚至幾千。所以當量子產率大於1時,一般可考慮反應具有鏈反應的機理。
決定一個光化學反應的真正途徑往往需要建立若干個對應於不同機理的假想模型,找出各模型體系與濃度、光強及其他有關參量間的動力學方程,然後考察何者與實驗結果的相符合程度最高,以決定哪一個是最可能的反應途徑。研究反應機理的常用實驗方法,除示蹤原子標記法外,在光化學中最早採用的猝滅法仍是非常有效的一種方法。這種方法是通過被激發分子所發熒光被其他分子猝滅的動力學測定來研究光化學反應機理的。它可以用來測定分子處於電子激發態時的酸性、分子雙聚化的反應速率和能量的長程傳遞速率。猝滅是一種雙分子過程,如原激發分子為A*,猝滅劑分子為Q,此過程為:
A*+Q─→A+Q*
顯然猝滅過程也是一種敏化過程。Q可以看成是 A*的猝滅劑,也可以把A看成是Q的敏化劑。

4相關書籍

大氣中的光化學
3

  3

地球與行星的大氣現象, 如大氣構成、極光、輻射屏蔽和氣候等,均和大氣的化學組成與對它的輻照情況有關。地球的大氣在地表上主要由氮氣與氧氣組成。但高空處大氣的原子與分子組成卻很不相同,主要和吸收太陽輻射后的光化學反應有關。大氣污染過程包含著極其豐富而複雜的化學過程,用來描述這些過程的綜合模型包含著許多光化學過程。如棕色二氧化氮在日照下激發成的高能態分子,是氧與碳氫化物鏈反應的引發劑。又如氟碳化物在高空大氣中的光解與臭氧屏蔽層變化的關係等都是以光化學為基礎的(見環境光化學)。

5區別

光化學過程是地球上最普遍、最重要的過程之一,綠色植物的光合作用,動物的視覺,塗料與高分子材料的光致變性,以及照相、光刻、有機化學反應的光催化等,無不與光化學過程有關。近年來得到廣泛重視的同位素與相似元素的光致分離、光控功能體系的合成與應用等,更體現了光化學是一個極活躍的領域。但從理論與實驗技術方面來看,在化學各領域中,光化學還很不成熟。
光化學反應與一般熱化學反應相比有許多不同之處,主要表現在:①加熱使分子活化時,體系中分子能量的分佈服從玻耳茲曼分佈;而分子受到光激活時,原則上可以做到選擇性激發(能躍值的選擇、電子激發態模式的選擇等),體系中分子能量的分佈屬於非平衡分佈。所以光化學反應的途徑與產物往往和基態熱化學反應不同。②只要光的波長適當,能為物質所吸收,即使在很低的溫度下,光化學反應仍然可以進行。

6相關學科

化學、無機化學、有機化學、分析化學、物理化學、化學動力學、化學熱力學、結構化學、量子化學、電化學、核化學、高分子化學、放射化學、同位素化學、輻射化學。

7光化學

作者: 姜月順、李鐵津 出版社: 化學工業出版社 出版日期: 2005年01月
ISBN: 7-5025-6135-8 開本: 16 開
類別: 物理化學,材料科學,其它方向 頁數: 356 頁
簡介
本書介紹光化學、光物理和光生物領域的有關基礎知識。具體內容包括:分子軌道和吸收光譜;分子激發態的命運--光物理和光化學過程;有機光化學反應;無機和半導體材料的光化學與光電化學;激光化學與分子動態學;飛秒化學;有機分子體系的光電子轉移催化;超分子組裝體系的光物理和光化學過程;光和表面與界面化學;攝影感光材料化學;光信息存儲材料和技術;納米晶光電化學太陽能轉化;光合作用。

8歷史

最早進行光化學研究的學者是義大利化學家G. L. Ciamician,從1886年開始,他與義大利化學家Paolo Silber共同完成了「苯醌向對苯二酚的轉化」以及「硝基苯在醇溶液中的光化學作用」等研究[3],他也可被認為是太陽能電池板之父。在1912年的第8屆國際應用化學大會上,他以「光化學的未來」為題發表了一篇演講,展望了光化學在未來可能起到的重要作用[4]。

9研究內容

有機光化學
烯烴光化學
芳烴光化學
羰基化合物光化學
共軛烯酮光化學
偶氮化合物光化學
重氮化合物光化學
疊氮化合物光化學
有機硫化物光化學
光敏氧化反應
光催化
超分子光化學
光電化學
生物光化學
上一篇[博比·查爾頓]    下一篇 [基恩]

相關評論

同義詞:暫無同義詞