標籤:科技

內存是計算機中重要的部件之一,它是與CPU進行溝通的橋樑。計算機中所有程序的運行都是在內存中進行的,因此內存的性能對計算機的影響非常大。內存(Memory)也被稱為內存儲器,其作用是用於暫時存放CPU中的運算數據,以及與硬碟等外部存儲器交換的數據。只要計算機在運行中,CPU就會把需要運算的數據調到內存中進行運算,當運算完成後CPU再將結果傳送出來,內存的運行也決定了計算機的穩定運行。 內存是由內存晶元、電路板、金手指等部分組成的。

1內存簡介

在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存,港台稱之為記憶體)。
內存

  內存

內存又稱主存,是CPU能直接定址的存儲空間,由半導體器件製成。內存的特點是存取速率快。內存是電腦中的主要部件,它是相對於外存而言的。我們平常使用的程序,如Windows操作系統、打字軟體、遊戲軟體等,一般都是安裝在硬碟等外存上的,但僅此是不能使用其功能的,必須把它們調入內存中運行,才能真正使用其功能,我們平時輸入一段文字,或玩一個遊戲,其實都是在內存中進行的。就好比在一個書房裡,存放書籍的書架和書櫃相當於電腦的外存,而我們工作的辦公桌就是內存。通常我們把要永久保存的、大量的數據存儲在外存上,而把一些臨時的或少量的數據和程序放在內存上,當然內存的好壞會直接影響電腦的運行速度。

2內存概述

內存就是暫時存儲程序以及數據的地方,比如當我們在使用WPS處理文稿時,當你在鍵盤上敲入字元時,它就被存入內存中,當你選擇存檔時,內存中的數據才會被存入硬(磁)盤。在進一步理解它之前,還應認識一下它的物理概念。
DDR 和DDR2 技術對比的數據

  DDR 和DDR2 技術對比的數據

內存一般採用半導體存儲單元,包括隨機存儲器(RAM),只讀存儲器(ROM),以及高速緩存(CACHE)。只不過因為RAM是其中最重要的存儲器。(synchronous)SDRAM同步動態隨機存取存儲器:SDRAM為168腳,這是目前PENTIUM及以上機型使用的內存。SDRAM將CPU與RAM通過一個相同的時鐘鎖在一起,使CPU和RAM能夠共享一個時鐘周期,以相同的速度同步工作,每一個時鐘脈衝的上升沿便開始傳遞數據,速度比EDO內存提高50%。DDR(DOUBLE DATA RATE)RAM :SDRAM的更新換代產品,他允許在時鐘脈衝的上升沿和下降沿傳輸數據,這樣不需要提高時鐘的頻率就能加倍提高SDRAM的速度。
只讀存儲器(ROM)
ROM表示只讀存儲器(Read Only Memory),在製造ROM的時候,信息(數據或程序)就被存入並永久保存。這些信息只能讀出,一般不能寫入,即使機器停電,這些數據也不會丟失。ROM一般用於存放計算機的基本程序和數據,如BIOS ROM。其物理外形一般是雙列直插式(DIP)的集成塊。
隨機存儲器(RAM)
內存

  內存

隨機存儲器(Random Access Memory)表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。我們通常購買或升級的內存條就是用作電腦的內存,內存條(SIMM)就是將RAM集成塊集中在一起的一小塊電路板,它插在計算機中的內存插槽上,以減少RAM集成塊佔用的空間。目前市場上常見的內存條有1G/條,2G/條,4G/條等。
高速緩衝存儲器(Cache)
Cache也是我們經常遇到的概念,也就是平常看到的一級緩存(L1 Cache)、二級緩存(L2 Cache)、三級緩存(L3 Cache)這些數據,它位於CPU與內存之間,是一個讀寫速度比內存更快的存儲器。當CPU向內存中寫入或讀出數據時,這個數據也被存儲進高速緩衝存儲器中。當CPU再次需要這些數據時,CPU就從高速緩衝存儲器讀取數據,而不是訪問較慢的內存,當然,如需要的數據在Cache中沒有,CPU會再去讀取內存中的數據。
物理存儲器地址空間
物理存儲器和存儲地址空間是兩個不同的概念。但是由於這兩者有十分密切的關係,而且兩者都用B、KB、MB、GB來度量其容量大小,因此容易產生認識上的混淆。初學者弄清這兩個不同的概念,有助於進一步認識內存儲器和用好內存儲器。
內存

  內存

物理存儲器是指實際存在的具體存儲器晶元。如主板上裝插的內存條和裝載有系統的BIOS的ROM晶元,顯示卡上的顯示RAM晶元和裝載顯示BIOS的ROM晶元,以及各種適配卡上的RAM晶元和ROM晶元都是物理存儲器。
存儲地址空間是指對存儲器編碼(編碼地址)的範圍。所謂編碼就是對每一個物理存儲單元(一個位元組)分配一個號碼,通常叫作「編址」。分配一個號碼給一個存儲單元的目的是為了便於找到它,完成數據的讀寫,這就是所謂的「定址」(所以,有人也把地址空間稱為定址空間)。
地址空間的大小和物理存儲器的大小並不一定相等。舉個例子來說明這個問題:某層樓共有17個房間,其編號為801~817。這17個房間是物理的,而其地址空間採用了三位編碼,其範圍是800~899共100個地址,可見地址空間是大於實際房間數量的。
對於386以上檔次的微機,其地址匯流排為32位,因此地址空間可達2的32次方,即4GB。(雖然如此,但是我們一般使用的一些操作系統例如windows xp、卻最多只能識別或者使用3.25G的內存,64位的操作系統能識別並使用4G和4G以上的的內存,
好了,現在可以解釋為什麼會產生諸如:常規內存、保留內存、上位內存、高端內存、擴充內存和擴展內存等不同內存類型。

3內存概念

擴充內存
到1984年,即286被普遍接受不久,人們越來越認識到640KB的限制已成為大型程序的障礙,這時,Intel和Lotus,這兩家硬、軟體的傑出代表,聯手制定了一個由硬體和軟體相結合的方案,此方法使所有PC機存取640KB以上RAM成為可能。而Microsoft剛推出Windows不久,對內存空間的要求也很高,因此它也及時加入了該行列。
在1985年初,Lotus、Intel和Microsoft三家共同定義了LIM-EMS,即擴充內存規範,通常稱EMS為擴充內存。當時,EMS需要一個安裝在I/O槽口的內存擴充卡和一個稱為EMS的擴充內存管理程序方可使用。但是I/O插槽的地址線只有24位(ISA匯流排),這對於386以上檔次的32位機是不能適應的。所以,現在已很少使用內存擴充卡。現在微機中的擴充內存通常是用軟體如DOS中的EMM386把擴展內存模擬或擴充內存來使用。所以,擴充內存和擴展內存的區別並不在於其物理存儲器的位置,而在於使用什麼方法來讀寫它。下面將作進一步介紹。
前面已經說過擴充存儲器也可以由擴展存儲器模擬轉換而成。EMS的原理和XMS不同,它採用了頁幀方式。頁幀是在1MB空間中指定一塊64KB空間(通常在保留內存區內,但其物理存儲器來自擴展存儲器),分為4頁,每頁16KB。EMS存儲器也按16KB分頁,每次可交換4頁內容,以此方式可訪問全部EMS存儲器。符合EMS的驅動程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。
高端內存區
在實方式下,內存單元的地址可記為:
段地址:段內偏移
高端內存

  高端內存

通常用十六進位寫為XXXX:XXXX。實際的物理地址由段地址左移4位再和段內偏移相加而成。若地址各位均為1時,即為FFFF:FFFF。其實際物理地址為:FFF0+FFFF=10FFEF,約為1088KB(少16位元組),這已超過1MB範圍進入擴展內存了。這個進入擴展內存的區域約為64KB,是1MB以上空間的第一個64KB。我們把它稱為高端內存區HMA(High Memory Area)。HMA的物理存儲器是由擴展存儲器取得的。因此要使用HMA,必須要有物理的擴展存儲器存在。此外HMA的建立和使用還需要XMS驅動程序HIMEM.SYS的支持,因此只有裝入了HIMEM.SYS之後才能使用HMA。
(影子)內存
對於細心的讀者,可能還會發現一個問題:即是對於裝有1MB或1MB以上物理存儲器的機器,其640KB~1024KB這部分物理存儲器如何使用的問題。由於這部分地址空間已分配為系統使用,所以不能再重複使
內存

  內存

用。為了利用這部分物理存儲器,在某些386系統中,提供了一個重定位功能,即把這部分物理存儲器的地址重定位為1024KB~1408KB。這樣,這部分物理存儲器就變成了擴展存儲器,當然可以使用了。但這種重定位功能在當今高檔機器中不再使用,而把這部分物理存儲器保留作為Shadow存儲器。Shadow存儲器可以佔據的地址空間與對應的ROM是相同的。Shadow由RAM組成,其速度大大高於ROM。當把ROM中的內容(各種BIOS程序)裝入相同地址的Shadow RAM中,就可以從RAM中訪問BIOS,而不必再訪問ROM。這樣將大大提高系統性能。因此在設置CMOS參數時,應將相應的Shadow區設為允許使用(Enabled)。
CL延遲
CL反應時間是衡定內存的另一個標誌。CL是CAS Latency的縮寫,指的是內存存取數據所需的延遲時間,簡單的說,就是內存接到CPU的指令后的反應速度。一般的參數值是2和3兩種。數字越小,代表反應所需的時間越短。在早期的PC133內存標準中,這個數值規定為3,而在Intel重新制訂的新規範中,強制要求CL的反應時間必須為2,這樣在一定程度上,對於內存廠商的晶元及PCB的組裝工藝要求相對較高,同時也保證了更優秀的品質。因
內存

  內存

此在選購品牌內存時,這是一個不可不察的因素。
還有另的詮釋:內存延遲基本上可以解釋成是系統進入數據進行存取操作就序狀態前等待內存響應的時間。打個形象的比喻,就像你在餐館里用餐的過程一樣。你首先要點菜,然後就等待服務員給你上菜。同樣的道理,內存延遲時間設置的越短,電腦從內存中讀取數據的速度也就越快,進而電腦其他的性能也就越高。這條規則雙雙適用於基於英特爾以及AMD處理器的系統中。由於沒有比2-2-2-5更低的延遲,因此國際內存標準組織認為以現在的動態內存技術還無法實現0或者1的延遲。
通常情況下,我們用4個連著的阿拉伯數字來表示一個內存延遲,例如2-2-2-5。其中,第一個數字最為重要,它表示的是CAS Latency,也就是內存存取數據所需的延遲時間。第二個數字錶示的是RAS-CAS延遲,接下來的兩個數字分別表示的是RAS預充電時間和Act-to-Precharge延遲。而第四個數字一般而言是它們中間最大的一個。
內存條的誕生
內存晶元的狀態一直沿用到286初期,鑒於它存在著無法拆卸更換的弊病,這對於計算機的發展造成了現實的阻礙。有鑒於此,內存條便應運而生了。將內存晶元焊接到事先設計好的印刷線路板上,而電腦主板上也改用內存插槽。這樣就把內存難以安裝和更換的問題徹底解決了。
在80286主板發布之前,內存並沒有被世人所重視,這個時候的內存是直接固化在主板上,而且容量只有64 ~256KB,對於當時PC所運行的工作程序來說,這種內存的性能以及容量足以滿足當時軟體程序的處理需要。不過隨著軟體程序和新一代80286硬體平台的出現,程序和硬體對內存性能提出了更高要求,為了提高速度並擴大容量,內存必須以獨立的封裝形式出現,因而誕生了「內存條」概念。
在80286主板剛推出的時候,內存條採用了SIMM(Single In-lineMemory Modules,單邊接觸內存模組)介面,容量為30pin、256kb,必須是由8 片數據位和1 片校驗位組成1 個bank,正因如此,我們見到的30pin SIMM一般是四條一起使用。自1982年PC進入民用市場一直到現在,搭配80286處理器的30pin SIMM內存是內存領域的開山鼻祖。
隨後,在1988 ~1990 年當中,PC 技術迎來另一個發展高峰,也就是386和486時代,此時CPU 已經向16bit 發展,所以30pin SIMM內存再也無法滿足需求,其較低的內存帶寬已經成為急待解決的瓶頸,所以此時72pin SIMM 內存出現了,72pin SIMM支持32bit快速頁模式內存,內存帶寬得以大幅度提升。72pin SIMM內存單條容量一般為512KB ~2MB,而且僅要求兩條同時使用,由於其與30pin SIMM 內存無法兼容,因此這個時候PC業界毅然將30pin SIMM 內存淘汰出局了。
EDO DRAM(Extended Date Out RAM 外擴充數據模式存儲器)內存,這是1991 年到1995 年之間盛行的內存條,EDO DRAM同FPM DRAM(Fast Page Mode RAM 快速頁面模式存儲器)極其相似,它取消了擴展數據輸出內存與傳輸內存兩個存儲周期之間的時間間隔,在把數據發送給CPU的同時去訪問下一個頁面,故而速度要比普通DRAM快15~30%。工作電壓為一般為5V,帶寬32bit,速度在40ns以上,其主要應用在當時的486及早期的Pentium電腦上。
在1991 年到1995 年中,讓我們看到一個尷尬的情況,那就是這幾年內存技術發展比較緩慢,幾乎停滯不前,所以我們看到此時EDO DRAM有72 pin和168 pin並存的情況,事實上EDO內存也屬於72pin SIMM 內存的範疇,不過它採用了全新的定址方式。EDO 在成本和容量上有所突破,憑藉著製作工藝的飛速發展,此時單條EDO內存的容量已經達到4 ~16MB。由於Pentium及更高級別的CPU數據匯流排寬度都是64bit甚至更高,所以EDO DRAM與FPM DRAM都必須成對使用。
DDR時代
DDR SDRAM(Double Data Rate SDRAM)簡稱DDR,也就是「雙倍速率SDRAM」的意思。DDR可以說是SDRAM的升級版本,DDR在時鐘信號上升沿與下降沿各傳輸一次數據,這使得DDR的數據傳輸速度為傳統SDRAM的兩倍。由於僅多採用了下降緣信號,因此並不會造成能耗增加。至於定址與控制信號則與傳統SDRAM相同,僅在時鐘上升緣傳輸。
DDR內存是作為一種在性能與成本之間折中的解決方案,其目的是迅速建立起牢固的市場空間,繼而一步步在頻率上高歌猛進,最終彌補內存帶寬上的不足。第一代DDR200 規範並沒有得到普及,第二代PC266 DDR SRAM(133MHz時鐘×2倍數據傳輸=266MHz帶寬)是由PC133SDRAM內存所衍生出的,它將DDR 內存帶向第一個高潮,目前還有不少賽揚和AMD K7處理器都在採用DDR266規格的內存,其後來的DDR333內存也屬於一種過度,而DDR400內存成為目前的主流平台選配,雙通道DDR400內存已經成為800FSB處理器搭配的基本標準,隨後的DDR533 規範則成為超頻用戶的選擇對象。
DDR3時代
DDR3相比起DDR2有更低的工作電壓,從DDR2的1.8V降落到1.5V,性能更好更為省電;DDR2的4bit預讀升級為8bit預讀。DDR3目前最高能夠達到2000Mhz的速度,儘管目前最為快速的DDR2內存速度已經提升到800Mhz/1066Mhz的速度,但是DDR3內存模組仍會從1066Mhz起跳。
一、DDR3在DDR2基礎上採用的新型設計:
1.8bit預取設計,而DDR2為4bit預取,這樣DRAM內核的頻率只有介面頻率的1/8,DDR3-800的核心工作頻率只有100MHz。
2.採用點對點的拓樸架構,以減輕地址/命令與控制匯流排的負擔。
3.採用100nm以下的生產工藝,將工作電壓從1.8V降至1.5V,增加非同步重置(Reset)與ZQ校準功能。部分廠商已經推出1.35V的低壓版DDR3內存。
SRAM
SRAM(Static RAM)意為靜態隨機存儲器。SRAM數據不需要通過不斷地刷新來保存,因此速度比DRAM(動態隨機存儲器)快得多。但是SRAM具有的缺點是:同容量相比DRAM需要非常多的晶體管,發熱量也非常大。因此SRAM難以成為大容量的主存儲器,通常只用在CPU、GPU中作為緩存,容量也只有幾十K至幾十M。
SRAM目前發展出的一個分支是eSRAM(Enhanced SRAM),為增強型SRAM,具備更大容量和更高運行速度。
XDR RAM
XDR內存是RDRAM的升級版。依舊由RAMBUS公司推出。XDR就是「eXtreme Data Rate」的縮寫。
XDR依舊存在RDRAM不能大面普及的那些不足之處。因此,XDR內存的應用依舊非常有限。比較常見的只有索尼的PS3遊戲機。
MRAM
磁性存儲器。它和Fe-RAM具有相似性,依舊基於磁性物質來記錄數據。
延遲問題
從上表可以看出,在同等核心頻率下,DDR2的實際工作頻率是DDR的兩倍。這得益於DDR2內存擁有兩倍於標準DDR內存的4BIT預讀取能力。換句話說,雖然DDR2和DDR一樣,都採用了在時鐘的上升延和下降延同時進行數據傳輸的基本方式,但DDR2擁有兩倍於DDR的預讀取系統命令數據的能力。也就是說,在同樣100MHz的工作頻率下,DDR的實際頻率為200MHz,而DDR2則可以達到400MHz。
這樣也就出現了另一個問題:在同等工作頻率的DDR和DDR2內存中,後者的內存延時要慢於前者。舉例來說,DDR 200和DDR2-400具有相同的延遲,而後者具有高一倍的帶寬。實際上,DDR2-400和DDR 400具有相同的帶寬,它們都是3.2GB/s,但是DDR400的核心工作頻率是200MHz,而DDR2-400的核心工作頻率是100MHz,也就是說DDR2-400的延遲要高於DDR400。
DDR2
除了以上所說的區別外,DDR2還引入了三項新的技術,它們是OCD、ODT和Post CAS。
OCD(Off-Chip Driver):也就是所謂的離線驅動調整,DDR II通過OCD可以提高信號的完整性。DDR II通過調整上拉(pull-up)/下拉(pull-down)的電阻值使兩者電壓相等。使用OCD通過減少DQ-DQS的傾斜來提高信號的完整性;通過控制電壓來提高信號品質。
ODT:ODT是內建核心的終結電阻器。我們知道使用DDR SDRAM的主板上面為了防止數據線終端反射信號需要大量的終結電阻。它大大增加了主板的製造成本。實際上,不同的內存模組對終結電路的要求是不一樣的,終結電阻的大小決定了數據線的信號比和反射率,終結電阻小則數據線信號反射低但是信噪比也較低;終結電阻高,則數據線的信噪比高,但是信號反射也會增加。因此主板上的終結電阻並不能非常好的匹配內存模組,還會在一定程度上影響信號品質。DDR2可以根據自己的特點內建合適的終結電阻,這樣可以保證最佳的信號波形。使用DDR2不但可以降低主板成本,還得到了最佳的信號品質,這是DDR不能比擬的。
Post CAS:它是為了提高DDR II內存的利用效率而設定的。在Post CAS操作中,CAS信號(讀寫/命令)能夠被插到RAS信號後面的一個時鐘周期,CAS命令可以在附加延遲(Additive Latency)後面保持有效。原來的tRCD(RAS到CAS和延遲)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中進行設置。由於CAS信號放在了RAS信號後面一個時鐘周期,因此ACT和CAS信號永遠也不會產生碰撞衝突。
總的來說,DDR2採用了諸多的新技術,改善了DDR的諸多不足,雖然它目前有成本高、延遲慢能諸多不足,但相信隨著技術的不斷提高和完善,這些問題終將得到解決。
何謂內存帶寬
從功能上理解,我們可以將內存看作是內存控制器(一般位於北橋晶元中)與CPU之間的橋樑或與倉庫。顯然,內存的容量決定「倉庫」的大小,而內存的帶寬決定「橋樑」的寬窄,兩者缺一不可,這也就是我們常常說道的「內存容量」與「內存速度」。除了內存容量與內存速度,延時周期也是決定其性能的關鍵。當CPU需要內存中的數據時,它會發出一個由內存控制器所執行的要求,內存控制器接著將要求發送至內存,並在接收數據時向CPU報告整個周期(從CPU到內存控制器,內存再回到CPU)所需的時間。毫無疑問,縮短整個周期也是提高內存速度的關鍵,這就好比在橋樑上工作的警察,其指揮疏通能力也是決定通暢度的因素之一。更快速的內存技術對整體性能表現有重大的貢獻,但是提高內存帶寬只是解決方案的一部分,數據在CPU以及內存間傳送所花的時間通常比處理器執行功能所花的時間更長,為此緩衝區被廣泛應用。其實,所謂的緩衝器就是CPU中的一級緩存與二級緩存,它們是內存這座「大橋樑」與CPU之間的「小橋樑」。事實上,一級緩存與二級緩存採用的是SRAM,我們也可以將其寬泛地理解為「內存帶寬」,不過現在似乎更多地被解釋為「前端匯流排」,所以我們也只是簡單的提一下。事先預告一下,「前端匯流排」與「內存帶寬」之間有著密切的聯繫,我們將會在後面的測試中有更加深刻的認識。
提高內存帶寬
內存帶寬的計算方法並不複雜,大家可以遵循如下的計算公式:帶寬=匯流排寬度×匯流排頻率×一個時鐘周期內交換的數據包個數。很明顯,在這些乘數因子中,每個都會對最終的內存帶寬產生極大的影響。然而,如今在頻率上已經沒有太大文章可作,畢竟這受到製作工藝的限制,不可能在短時間內成倍提高。而匯流排寬度和數據包個數就大不相同了,簡單的改變會令內存帶寬突飛猛進。DDR技術就使我們感受到提高數據包個數的好處,它令內存帶寬瘋狂地提升一倍。當然,提高數據包個數的方法不僅僅局限於在內存上做文章,通過多個內存控制器并行工作同樣可以起到效果,這也就是如今熱門的雙通道DDR晶元組(如nForce2、I875/865等)。事實上,雙通道DDR內存控制器並不能算是新發明,因為早在RAMBUS時代,RDRAM就已經使用了類似技術,只不過當時RDRAM的匯流排寬度只有16Bit,無法與DDR的64Bit相提並論。內存技術發展到如今這一階段,四通道內存控制器的出現也只是時間問題,VIA的QBM技術以及SiS支持四通道RDRAM的晶元組,這些都是未來的發展方向。至於顯卡方面,我們對其顯存帶寬更加敏感,這甚至也是很多廠商用來區分高低端產品的重要方面。同樣是使用DDR顯存的產品,128Bit寬度的產品會表現出遠遠勝過64Bit寬度的產品。當然提高顯存頻率也是一種解決方案,不過其效果並不明顯,而且會大幅度提高成本。值得注意的是,目前部分高端顯卡甚至動用了DDRII技術,不過至少在目前看來,這項技術還為時過早。
做工要精良
對於選擇內存來說,最重要的是穩定性和性能,而內存的做工水平直接會影響到性能、穩定以及超頻。
內存顆粒的好壞直接影響到內存的性能,可以說也是內存最重要的核心元件。所以大家在購買時,盡量選擇大廠生產出來的內存顆粒,一般常見的內存顆粒廠商有三星、現代、鎂光、南亞、茂矽等,它們都是經過完整的生產工序,因此在品質上都更有保障。而採用這些頂級大廠內存顆粒的內存條品質性能,必然會比其他雜牌內存顆粒的產品要高出許多。
內存PCB電路板的作用是連接內存晶元引腳與主板信號線,因此其做工好壞直接關係著系統穩定性。目前主流內存PCB電路板層數一般是6層,這類電路板具有良好的電氣性能,可以有效屏蔽信號干擾。而更優秀的高規格內存往往配備了8層PCB電路板,以起到更好的效能。
假冒返修產品
目前有一些內存往往使用了不同品牌、型號的內存顆粒,大家一眼就可以看出區別。同時有些無孔不入的JS也會採用打磨內存顆粒的作假手段,然後再加印上新的編號參數。不過仔細觀察,就會發現打磨過後的晶元比較暗淡無光,有起毛的感覺,而且加印上的字跡模糊不清晰。這些一般都是假冒的內存產品,需要注意。
此外,大家還要觀察PCB電路板是否整潔,有無毛刺等等,金手指是否很明顯有經過插拔所留下的痕迹,如果有,則很有可能是返修內存產品(當然也不排除有廠家出廠前經過測試,不過比較少數)。需要提醒大家的是,返修和假冒內存無論多麼便宜都不值得購買,因為其安全隱患十分嚴重。

4故障修復

一、開機無顯示
由於內存條原因出現此類故障一般是因為內存條與主板內存插槽接觸不良造成,只要用橡皮擦來回擦試其金手指部位即可解決問題(不要用酒精等清洗),還有就是內存損壞或主板內存槽有問題也會造成此類故障。
由於內存條原因造成開機無顯示故障,主機揚聲器一般都會長時間蜂鳴(針對Award Bios而言)
內存

  內存

二、windows系統運行不穩定,經常產生非法錯誤
出現此類故障一般是由於內存晶元質量不良或軟體原因引起,如若確定是內存條原因只有更換一途。
三、windows註冊表經常無故損壞,提示要求用戶恢復
此類故障一般都是因為內存條質量不佳引起,很難予以修復,唯有更換一途。
四、windows經常自動進入安全模式
此類故障一般是由於主板與內存條不兼容或內存條質量不佳引起,常見於PC133內存用於某些不支持PC133內存條的主板上,可以嘗試在CMOS設置內降低內存讀取速度看能否解決問題,如若不行,那就只有更換內存條了。
五、隨機性死機
此類故障一般是由於採用了幾種不同晶元的內存條,由於各內存條速度不同產生一個時間差從而導致死機,對此可以在CMOS設置內降低內存速度予以解決,否則,唯有使用同型號內存。還有一種可能就是內存條與主板不兼容,此類現象一般少見,另外也有可能是內存條與主板接觸不良引起電腦隨機性死機,此類現象倒是比較常見。
六、內存加大后系統資源反而降低
此類現象一般是由於主板與內存不兼容引起,常見於PC133內存條用於某些不支持PC133內存條的主板上,即使系統重裝也不能解決問題。
七、windows啟動時,在載入高端內存文件himem.sys時系統提示某些地址有問題
此問題一般是由於內存條的某些晶元損壞造成,解決方法可參見下面內存維修一法。
八、運行某些軟體時經常出現內存不足的提示
此現象一般是由於系統盤剩餘空間不足造成,可以刪除一些無用文件,多留一些空間即可,一般保持在300M左右為宜。
九、從硬碟引導安裝windows進行到檢測磁碟空間時,系統提示內存不足
此類故障一般是由於用戶在config.sys文件中加入了emm386.exe文件,只要將其屏蔽掉即可解決問題。
十、安裝windows進行到系統配置時產生一個非法錯誤
此類故障一般是由於內存條損壞造成,可以按內存維修一法來解決,如若不行,那就只有更換內存條了。
十一、啟動windows時系統多次自動重新啟動
此類故障一般是由於內存條或電源質量有問題造成,當然,系統重新啟動還有可能是CPU散熱不良或其他人為故障造成,對此,唯有用排除法一步一步排除。
十二、內存維修一法
出現上面幾種故障后,倘若內存損壞或晶元質量不行,如條件不允許可以用烙鐵將內存一邊的各晶元卸下,看能否解決問題,如若不行再換卸另一邊的晶元,直到成功為止(如此焊工只怕要維修手機的人方可達到)。當然,有條件用示波器檢測那就事半功倍了),採用此法后,因為已將內存的一邊晶元卸下,所以內存只有一半可用,例如,64M還有32M可用,為此,對於小容量內存就沒有維修的必要了。

5常見誤解

存儲卡的容量
存儲卡的容量不應當簡稱為「內存」,因其也是外存儲器。
上一篇[亞當斯]    下一篇 [佳慧]

相關評論

同義詞:暫無同義詞