1概述

數學中用以求解高次一元方程的一種方法。把方程的一側的數(包括未知數),通過移動使其值化成0,把方

分類體系

分類體系
程的另一側各項化成若干因式的乘積,然後分別令各因式等於0而求出其解的方法叫因式分解法。

2方法分類

把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫作分解因式。因式分解沒有普遍的方法,初中數學教材中主要介紹了提公因式法、公式法。
而在競賽上,又有拆項和添減項法,分組分解法和十字相乘法,待定係數法,雙十字相乘法,對稱多項式輪換對稱多項式法,餘數定理法,求根公式法,換元法,長除法,除法等。
方法二. 公式法
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。
平方差公式:a^2;-b^2;=(a+b)(a-b);
完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;
注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍。
立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);
立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);
完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.
其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)
例如:a^2; +4ab+4b^2; =(a+2b)^2;。
分解因式的技巧
1.分解因式與整式乘法是互為逆變形。
2.分解因式技巧掌握:
①等式左邊必須是多項式;
②分解因式的結果必須是以乘積的形式表示;
③每個因式必須是整式,且每個因式的次數都必須低於原來多項式的次數;
④分解因式必須分解到每個多項式因式都不能再分解為止。
註:分解因式前先要找到公因式,在確定公因式前,應從係數和因式兩個方面考慮。
3.提公因式法基本步驟:
(1)找出公因式;
(2)提公因式並確定另一個因式:
①第一步找公因式可按照確定公因式的方法先確定係數再確定字母;
②第二步提公因式並確定另一個因式,注意要確定另一個因式。
③提完公因式后,另一因式的項數與原多項式的項數相同。競賽用到的方法
上一篇[HTC One XL]    下一篇 [htc one x]

相關評論

同義詞:暫無同義詞