標籤:防震減災

地震波是指從震源產生向四外輻射的彈性波。地球內部存在著地震波速度突變的基幹界面、莫霍面和古登堡面,將地球內部分為地殼、地幔和地核三個圈層。

1概述

概念介紹
地震波是指從震源產生向四外輻射的彈性波。地球內部存在著地震波速度突變的基幹界面、莫霍面和古登堡面,將地球內部分為地殼、地幔和地核三個圈層。
現象介紹
我們最熟悉的波動是觀察到的水波。當向池塘里扔一塊石頭時水面被擾亂,以石頭入水處為中心有波紋向外擴展。這個波列是水波附近的水的顆粒運動造成的。然而水並沒有朝著水波傳播的方向流;如果水面浮著一個軟木塞,它將上下跳動,但並不會從原來位置移走。這個擾動由水粒的簡單前後運動連續地傳下去,從一個顆粒把運動傳給更前面的顆粒。這樣,水波攜帶石擊打破的水面的能量向池邊運移並在岸邊激起浪花。地震運動與此相當類似。我們感受到的搖動就是由地震波的能量產生的彈性
地震波

  地震波

岩石的震動。
假設一彈性體,如岩石,受到打擊,會產生兩類彈性波從源向外傳播。第一類波的物理特性恰如聲波。聲波,乃至超聲波,都是在空氣里由交替的擠壓(推)和擴張(拉)而傳遞。因為液體、氣體和固體岩石一樣能夠被壓縮,同樣類型的波能在水體如海洋和湖泊及固體地球中穿過。在地震時,這種類型的波從斷裂處以同等速度向所有方向外傳,交替地擠壓和拉張它們穿過的岩石,其顆粒在這些波傳播的方向上向前和向後運動,換句話說,這些顆粒的運動是垂直於波前的。向前和向後的位移量稱為振幅。在地震學中,這種類型的波叫P波,即縱波(圖2.1),它是首先到達的波。
圖2.1地震P波(縱波)和S波(橫波)運行時彈性岩石運動的形態
彈性岩石與空氣有所不同,空氣可受壓縮但不能剪切,而彈性物質通過使物體剪切和扭動,可以允許第二類波傳播。地震產生這種第二個到達的波叫S波,即橫波。在S波通過時,岩石的表現與在P波傳播過程中的表現相當不同。因為S波涉及剪切而不是擠壓,使岩石顆粒的運動橫過運移方向(圖2.1)。這些岩石運動可在一垂直向或水平面里,它們與光波的橫向運動相似。P和S波同時存在使地震波列成為具有獨特的性質組合,使之不同於光波或聲波的物理表現。因為液體或氣體內不可能發生剪切運動,S波不能在它們中傳播。P和S波這種截然不同的性質可被用來探測地球深部流體帶的存在(見第6章)。
相關性質
帶偏光眼鏡以減弱散射光的人可能熟悉光的偏振現象,只有S波具有偏振現象。只有那些在某個特定平面里橫向振動(上下、水平等)的那些光波能穿過偏光透鏡。傳過的光波稱之為平面偏振光。太陽光穿過大氣是沒有偏振的,即沒有光波振動的優選的橫方向。然而晶體的折射或通過特殊製造的塑料如偏光眼鏡,可使非偏振光成為平面偏振光。
當S波穿過地球時,他們遇到構造不連續界面時會發生折射或反射,並使其振動方向發生偏振。當發生偏振的S波的岩石顆粒僅在水平面中運動時,稱為SH波。當岩石顆粒在包含波傳播方向的垂直平面里運動時,這種S波稱為SV波。
大多數岩石,如果不強迫它以太大的幅度振動,具有線性彈性,即由於作用力而產生的變形隨作用力線性變化。這種線性彈性表現稱為服從虎克定律,是以與牛頓同時代的英國數學家羅伯特·虎克(1635~1703年)而命名的。這種線性關係由圖2.2所示的加重物的彈簧伸展來表示。如果重物的質量加倍,線性彈簧的伸展也加倍,如果重物回到原來大小,則彈簧回到原來位置。相似地,地震時岩石將對增大的力按比例地增加變形。在大多數情況下,變形將保持在線彈性範圍,在搖動結束時岩石將回到原來位置。然而在地震事件中有時發生重要的例外表現,例如,當強搖動發生於軟土壤時,會殘留永久的變形,波動變形后並不總能使土壤回到原位,在這種情況下,地震烈度較難預測。我們將在本書後面談到這些關鍵的非線性效果。
圖2.2 當施加的力加倍時,彈簧的伸展也加倍
彈簧的運動提供了極好的啟示,說明當地震波通過岩石時能量是如何變化的。與彈簧壓縮或伸張有關的能量為彈性勢,與彈簧部件運動有關的能量是動能。任何時間的總能量都是彈性能量和運動能量二者之和。對於理想的彈性介質來說,總能量是一個常數。在最大波幅的位置,能量全部為彈性勢能;當彈簧振蕩到中間平衡位置時,能量全部為動能。我們曾假定沒有摩擦或耗散力存在,所以一旦往複彈性振動開始,它將以同樣幅度持續下去。這當然是一個理想的情況。在地震時,運動的岩石間的摩擦逐漸生熱而耗散一些波動的能量,除非有新的能源加進來,像振動的彈簧一樣,地球的震動將逐漸停息。對地震波能量耗散的測量提供了地球內部非彈性特性的重要信息,然而除摩擦耗散之外,地震震動隨傳播距離增加而逐漸減弱現象的形成還有其他因素。
由於聲波傳播時其波前面為一擴張的球面,攜帶的聲音隨著距離增加而減弱。與池塘外擴的水波相似,我們觀察到水波的高度或振幅,向外也逐漸減小。波幅減小是因為初始能量傳播越來越廣而產生衰減,這叫幾何擴散。這種類型的擴散也使通過地球岩石的地震波減弱。除非有特殊情況,否則地震波從震源向外傳播得越遠,它們的能量就衰減得越多。

2波的性質

簡諧波
最簡單的波是簡諧波,即具有單一頻率和單一振幅的正弦波,如框圖2.1所示。實際地震記錄波形包含著多種波長的波,短波長的波疊加在較長波長的波上,如圖2.10所示。由法國物理學家傅里葉首次於1822年將複雜的波列定量表達為各種不同頻率和振幅的簡諧波的疊加,如圖2.3所示。較高階的諧波的頻率是最低頻的基波頻率的整數倍。實際記錄的地面運動可用傅里葉方法,即由計算機分別考察各諧波組分來進行分析
綜述
當水波遇到界面時,如陡岸,會從邊界上反射回來,形成一列向岸外傳出的水波,與向岸內傳來的水波重疊。當海洋波斜射入淺灘時,波在海水深度變淺時走得較慢,落在海水較深處
地震波

  地震波

的波的後面。其結果是波向淺水彎曲。於是波前在它們擊岸前轉向越來越平行海灘(圖2.4)。折射這一名詞描述波傳播中由於傳播路徑上條件變化產生波前方向變化的現象。反射和折射也是光線通過透鏡和稜柱時人們熟知的性質。
現象介紹
像聲、光或水波一樣,地震波也可在一邊界上反射或折射,但和其他波不同的特點是,當地震波入射到地球內的一反射面時,例如一P波以一角度射向邊界面時,它不但分成一反射
地震波

  地震波

的P波和一折射的P波,還要產生一反射S波和折射S波,其原因是,在入射點邊界上的岩石不僅受擠壓,還受剪切。
換句話說,一入射P波產生4種轉換波(圖2.5)。由一種波型到另一種波型的波型增殖也發生於SV波斜入射於內部邊界時,會產生反射和折射的P波和SV波。在這種情況下反射和折射的S波總是SV型,這是因為當入射的SV波到達時岩石質點在一與地面垂直的入射面里橫向運動。相反,如果入射的S波是水平偏振的SH型,則質點在垂直於入射平面且平行於邊界面的方向上前後運動,在不連續界面上沒有擠壓或鉛垂方向的變形,這樣不會產生相應的新的P波和SV波,只有SH型的一個反射波和一折射波。從物理圖像形象地分析,垂直入射的P波在反射界面上沒有剪切分量,只有反射的P波,根本沒有反射的SV波或SH波。以上討論的波型轉換的種種限制,在全面理解地面運動的複雜性和解釋地震圖中的地震波各種圖像時是至關重要的。
圖2.5 一P波在兩種類型的岩石界面上的反射和折射(a)和地震P波和S波的傳播途徑在地質構造中受到反射和折射(b)
本書後面要討論到許多特殊的地震效應,它們都能用波的反射和折射完善地加以解釋。例如,考慮一S波從深部震源垂直向上傳播到地面。由於在地表入射和反射的波列疊加到一起,因此近地表處波的振幅將加倍,能量則變為4倍。這個預測與許多礦工的經驗是一致的,他們在許多情況下沒有意識到發生了一個強震。1976年中國唐山破壞性地震就是這種情況。在井下工作的煤礦工人僅感到中等搖動,只是由於斷電他們才知道發生了問題。但當他們上到地表時,才驚恐地發現整個城市已變為廢墟;這次地震最終造成了24萬人喪失生命。
建築在較厚土壤上的,諸如在沿河流沖積河谷中的沉積物上的建築物,地震時易於遭受嚴重破壞,其原因也是波的放大和增強作用。當我們振動連在一起的兩個彈簧時,弱的彈簧將具有較大的振動幅度。類似地,當S波從地下深處傳上來時,穿過剛性較大的深部岩石到剛性較小的沖積物時,沖積河谷剛性小的軟弱岩石和土壤將使振幅增強4倍或更大,取決于波的頻率和沖積層的厚度。在1989年加利福尼亞的洛馬普瑞特地震時,建在砂上和沖填物上的舊金山濱海區的房屋比附近不遠建在堅固地基上相似的房屋破壞更大(圖2.6)。
圖2.6 1989年洛馬普瑞特地震后舊金山濱海區建在人工填埋的地基上一套公寓建築倒塌的景象

3地震共振

具體案例
有時大地震可以引起整個地球像鈴一樣振動起來。自18世紀起數學家們分析了一個彈性球的振動。1911年英國數學家勒夫(Love)曾預計,一個像地球同樣大的鋼球將具有周期約一小時的基本振動,並將有周期更小的泛音。然而在勒夫的預言過半個多世紀以後,地震學家對即使是最大的地震是否真具有足夠的能量去搖動地球,併產生深沉的地震音樂仍然沒有把握。不難想象,地震學家們首次觀測到地球自由振蕩時是如何驚喜若狂。1960年5月智利大地震時,在世界各地當時僅有的少數特長周期的地震儀上,清楚地記錄到極長周期的地震波動持續了許多天,測得的振動最長周期是53分,與勒夫預計的60分相差不多。這些地面運動記錄的分析首次給出了明確的證據,理論上預計的地球的自由振蕩確實被觀測到了。
圖2.7 1989年洛馬普瑞特地震時濱海區建築物受損情況
1989年洛馬普瑞特地震時,在濱海區填充地面沉降可達5英寸之多,特別是在原來的
海濱沙地上面又覆蓋了人工填充物,其建築物大多完全毀壞。毀壞或嚴重受損的建築
用黑色塊表示;受毀不那麼嚴重但也不能居住的建築用灰色塊表示;實心圓表示記錄
強地面運動的儀器,用於比較軟土壤與附近岩石地基上的搖動

總結

當一地震源釋放能量之後,地球的共振振動在不再受力的方式下持續,這時其振動頻率僅取決於彈性地球的本身性質。確切的數學模擬基本原理,依然類似於對撥動弦樂器的分析。希臘人在2 000多年前就認識到,音樂的諧波只取決於琴弦的長度、密度和繃緊程度(圖2.8)。這種自由振動叫本徵
地震波

  地震波

振動。同樣,被撥動了的地球內的本徵振動,取決於其地質構造的大小、密度和整個內部的彈性模量。
圖2.8 一彈性繩的振動狀態
彈性球體僅有兩種不同類型的本徵振動。一類叫T型或環型振蕩,僅包括地球岩石的水平移動;岩石的顆粒在球面——地球表面或一些內部界面上往複運動。第二類叫S型或球型振蕩,球型振蕩的運動分量既有沿半徑方向的,也有水平方向的。
近年來測量由大地震產生的球型和環型本徵振動,提供了推斷地球內部構造的全新的方法,我們將在本書第6章回到這一主題。

4地震面波

當P波和S波到達地球的自由面或位於層狀地質構造的界面時,在一定條件下會產生其他類型地震波。這些波中最重要的是瑞利波和勒夫波。這兩類波沿地球表面傳播;岩石振動振幅隨深度增加而逐漸減小至零。由於這些面波的能量被捕獲在表面才能沿著或近地表傳播,否則這些波將向下反射進入地球,在地表只有短暫的生命。這些波類似在倫敦的聖保羅大教堂 「耳語長廊」(譯者註:或中國天壇迴音壁)的牆面上捕獲的聲波,只有耳朵靠近牆面時才能聽到從對面牆上傳來的低語。
地震波

  地震波

勒夫波是地震面波中最簡單的一種類型。它們是以1912年首次描述它們的勒夫的姓名命名的。如圖2.9所示,這個類型的波使岩石質點運動類似SH波,運動沒有垂向位移。岩石運動在一垂直於傳播方向上在水平面內從一邊到另一邊。雖然勒夫波不包括垂直地面運動的波,但它們在地震中可以成為最具破壞性的,因為它們常具有很大振幅,能在建築物地基之下造成水平剪切。
圖2.9勒夫波和瑞利波傳播過程中近地表岩石的運動
相反,瑞利面波具有相當不同的地面運動。於1885年首次由瑞利(Lord Rayleigh)描述,它們是地震波中最近似水波的。岩石質點向前、向上、向後和向下運動,沿波的傳播方向作一垂直平面,質點在該平面內運動,描繪出一個橢圓。勒夫波和瑞利波的速度總比P波小,與S波的速度相等或小一些。從地面運動類似性看,球型(S型)自由振蕩是傳播的瑞利波的駐波,環型(T型)自由振蕩則與勒夫波對應。

5波序

由於不同地震波類型的速度不同,它們到達時間也就先後不同,從而形成一組序列,它解釋了地震時地面開始搖晃后我們經歷的感覺。記錄儀器則可以讓我們實際看到地面運動的狀態,如圖2.10所示。
從震源首先到達某地的第一波是「推和拉」的P波。它們一般以陡傾角出射地面,因此造成鉛垂方向的地面運動,垂直搖動一般比水平搖晃容易經受住,因此一般它們不是最具破壞性的波。因為S波的傳播速度約為P波的一半,相對強的S波稍晚才到達。它包括SH和SV波動:前者在水平平面上,後者在垂直平面上振動。S波比P波持續時間長些。地震主要通過P波的作用使建築物上下搖動,通過S波的作用側向晃動。
圖2.10地震記錄波形
上邊3條地震記錄是在日本記錄的震級為1.8的局部小震;下邊3條是在德國記錄到的挪威海中發生的5.1級地震;地震波到達的順序是相同的,雖然小震沒有面波發育,每一地震用3條地震記錄圖代表,每條記錄一個不同的搖動方向:東-西(E)、北-南(N)和上-下(Z)
正好是S波之後或與S波同時,勒夫波開始到達。地面開始垂直於波動傳播方向橫向搖動。儘管目擊者往往聲稱根據搖動方向可以判定震源方向,但勒夫波使得憑地面搖動的感覺判斷震源方向發生困難。下一個是橫過地球表面傳播的瑞利波,它使地面在縱向和垂直方向都產生搖動。這些波可能持續許多旋迴,引起大地震時熟知的描述為「搖滾運動」。因為它們隨著距離衰減的速率比P波或S波慢,在距震源距離大時感知的或長時間記錄下來的主要是面波。圖2.10所示的地震記錄,勒夫波和瑞利波比P波和S波持續的時間長5倍多。
類似於音樂樂曲最後一節,面波波列之後構成地震記錄的重要部分,稱之為地震尾波。地震波的尾部事實上包含著沿散射的路徑穿過複雜岩石構造的P波、S波、勒夫波和瑞利波的混合波。尾波中繼續的波動旋迴對於建築物的破壞可能起到落井下石的作用,促使已被早期到達的較強S波削弱的建築物倒塌。
面波擴展成為長長的尾波是波的頻散一例。各種類型的波通過物理性質或尺度變化的介質時都會發生這一效應。細看水塘中的水波顯示,具短波長的波紋傳播在較長波長的波紋前面。波峰的速度不是常數而取決于波的波長。當一塊石頭打到水中之後,隨時間的發展,原來的波開始按波長不同被區分開來,後來較短的波脊和波槽越來越傳播到長波的前面,地震面波傳播中也有類似現象。
不同地震波的波長變化很大,長至數千米,短至幾十米,這樣地震波很可能發生頻散。圖2.11顯示一典型面波從地面到較深處岩石質點運動隨深度的變化。既然為面波,絕大部分波的能量被捕獲在近地表處,到一定深度后岩石實際已不受面波傳過的影響,這一深度取決于波長,波長越長,波動穿入地球越深。一般地講,地球中的岩石越深,穿行其中的地震波速越快,所以長周期(長波長)面波一般比短周期(短波長)的傳播快些。這種波速度的差異,使面波發生頻散,拉開成長長的波列。但與水波相反,較長的面波是首先到達的。
圖2.11 水波或地震面波中水或岩石質點的橢圓運動軌跡
隨深度增大橢圓變小直至最後消失,橢圓運動可能是順時針的、也可能是逆時針的
我們還需要理解波的另一種性質,才能完成對地震波運動奇妙世界的全部了解,這就是波的衍射(繞射)現象(圖2.12)。當一列水波遇到一障礙,如一突出水面的垂直管子,波能的大部分能量反射走了,但有些波將繞著管子進入陰影,因而管子後面的水並不完全平靜。事實上所有類型的波的衍射——無論是水、聲或地震波都引起它們從直線路徑偏移,暗淡地照亮障礙物後面的區域。
圖2.12 海波被繞射傳播到海角屏蔽的後面海面
理論和觀察一致得出:長波比較短的波向平靜帶偏折更多。就是說,像頻散一樣繞射是波長的函數。對地質解釋最重要的一點是P波和S波及面波沒有被異常的岩石包體完全阻止,一些地震能量繞過地質構造繞射,另一些通過它們折射。
上一篇[雷克南]    下一篇 [公路運輸]

相關評論

同義詞:暫無同義詞