標籤: 暫無標籤

本書是綜合大學本科物理、計算機、電子等系列「大學數學」課程的教材。它符合國家教委1989年審訂的綜合大學本科物理類專業「高等數學課程教學基本要求」和教育部1998年制定的「全國碩士研究生入學統一考試數學考試大綱」的要求。本書分上、下冊。上冊包含一元微積分、線性代數初步、究竟解析幾何、多元函數微分學和重積分;下冊包含線面積分、級數與廣義積分學、線性代數和微分方程。

1 大學數學 -內容提要

  本書將「微積分」、「微分方程」和「線性代數」三部分內容統籌布局,循序漸進。全書力求基本理論的系統性和敘述的嚴密性,並適當地運用現代數學的觀點和方法,將部分經典內容優化或深化,有些定理給出了編著自己的新證明。
  本書例題和習題豐富,有利於提高讀者的分析能力。書末附有習題答案與提示。
  本書可供綜合性大學、理工科大學、師範院校作為教材。也可供工程技術人員閱讀。

2 大學數學 -圖書目錄

  第八章 線積分 面積分 場論
  8.1 線積分
  8.2 面積分
  8.3 線積分、面積分、體積分間的關係
  8.4 場論
  第九章 級數 廣義積分學
  9.1 級數 函數項級數
  9.2 冪級數
  9.3 傅里葉級數
  9.4 廣義積分學
  9.5 歐拉積分
  第十章 線性代數
  10.1 矩陣
  10.2 線性空間
  10.3 線性方程組
  10.4 線性變換
  10.5 歐幾里得空間
  10.6 二次型
  第十一章 微分方程
  11.1 一階微分方程
  11.2 高階微分方程
  11.3 微分方程的近似解
  11.4 微分方程組
  11.5 差分方程 一階偏微方程
  11.6 動力系統介紹
  習題答案與提示
  附錄Ⅲ 外微分
  附錄Ⅳ 多項式

3 大學數學 -全國高等職業教育規劃教材

  書名:大學數學(全國高等職業教育規劃教材)
  ISBN:730504554
  作者:胡炳生
  出版社:南京大學
  定價:29
  頁數:365
  出版日期:2005-9-1
  版次:
  開本:16開
  包裝:
  簡介:本書由分析學(一元微積分、多元微積分、常微分方程和差分方程)、線性代數(行列式、矩陣、線性方程組)、概率統計和數學建模(包括數學實驗)四個模塊共十章組成。各章都有較多的數學應用實例,內容涵蓋了高職、高專和一般大學非數學專業對於高等數學教學的需求。每個模塊分為基本要求和提高要求(加*號)兩部分,每一章習題也分A、B兩組,富有較大的彈性,可供72~120學時不同專業的高等數學課程選用。
  目錄:
  第一章 函數、極限與連續
  第一節 函數
  第二節 極限
  第三節 函數的連續性
  第二章 一元函數微分學
  第一節 導數與微分
  第二節 導數與微分的應用
  第三章 一元函數積分學
  第一節 不定積分
  第二節 定積分的概念與性質
  第三節 定積分的計算
  第四節 廣義積分*
  第五節 定積分的應用
  第四章 多元微積分*
  第一節 多元函數的極限與連續
  第二節 偏導數與全微分
  第三節 複合函數與隱函數的微分法
  第四節 多元函數的極限
  第五節 二重積分的概念與計算
  第五章 常微分方程與差分方程*
  第一節 常微分方程的基本概念
  第二節 一階線性微分方程
  第三節 二階常係數線性微分方程
  第四節 差分與差分方程初步
  第六章 行列式與矩陣
  第一節 行列式的概念與計算
  第二節 矩陣及其初等變換
  第三節 矩陣的秩
  第七章 線性方程組
  第一節 線性方程組的消元解法
  第二節 n維向量及其線性關係*
  第三節 線性方程組解的結構*
  第八章 隨機變數與概率分佈
  第一節 離散型隨機變數與概率分佈
  第二節 連續型隨機變數與概率分佈
  第三節 隨機變數的數字特徵
  第九章 數理統計及其應用
  第一節 隨機抽樣的常用方法
  第二節 抽樣檢驗和質量控制
  第三節 統計檢驗*
  第四節 風險決策*
  第五節 兩個隨機變數的相關分析*
  第十章 數學建模與數學實驗*
  第一節 數學模型與數學建模的意義
  第二節 初等數學模型
  第三節 微分方程模型
  第四節 圖和網路模型
  第五節 數學規劃模型
  第六節 隨機模型
  第七節 數學實驗
  附錄Ⅰ 標準正態分佈表
  附錄Ⅱ t分佈雙側臨界值表
  附錄Ⅲ 確定一次抽樣方案的npα和c值表
  大學數學習題解答
  後記

4 大學數學 -清華大學出版社圖書

圖書信息

  書名:大學數學
  ISBN:9787302263944
  作者:李炳照、王宏洲
  定價:36元
  出版日期:2011-8-18
  出版社:清華大學出版社圖書簡介

  本書是一本通俗易懂的大學數學教材,尤其適合文科及設計藝術類學生使用.內容包括了高等數學、線性代數及概率統計等大學生所需要掌握的基礎知識.在本書的編排過程中,特別注重了學生形象思維的培養,對某些較難理解的概念、原理,盡量用圖形、圖表的形式給出.同時,本書也兼顧了文科類、設計藝術類學生中學知識與大學知識的銜接.本書語言流暢、通俗易懂,內容生動、方法簡潔,便於應用.
  本書適用於普通高等院校文科類、設計藝術類以及其他相關專業學生,也可供從事大學數學教學及科研的人員參考使用目錄

  第1章 集合與函數1
  1.1 集合2
  1.1.1 集合的概念2
  1.1.2 集合的表示方法2
  1.1.3 集合的運算及運算律3
  1.1.4 區間和鄰域4
  1.2 映射與函數5
  1.2.1 映射6
  1.2.2 函數6
  1.3 初等函數14
  1.3.1 基本初等函數14
  1.3.2 初等函數18
  本章知識點19
  習題121
  第2章 極限與連續24
  2.1 數列25
  2.1.1 數列的概念25
  2.1.2 數列的特性25
  2.1.3 數列?x?n=1+(-1)?n-11n,n=1,2,?…的變化趨勢25
  2.2 數列的極限26
  2.2.1 數列極限的概念26
  2.2.2 lim?n?→∞?x?n=a?的幾何解釋27
  2.2.3 收斂數列的有界性27
  2.2.4 子數列27
  2.3 函數的極限28
  2.3.1 當?x?→∞時函數?f (x)的極限28
  2.3.2 當?x→x??0時函數?f (x)的極限29
  2.3.3 函數極限的性質30
  2.4 無窮小量與無窮大量31
  2.4.1 無窮小量31
  2.4.2 無窮大量32
  2.4.3 漸近線33
  2.5 極限運演算法則34
  2.5.1 極限的四則運演算法則34
  2.5.2 複合函數極限的運演算法則36
  2.6 極限存在準則 兩個重要極限37
  2.6.1 極限存在準則37
  2.6.2 兩個重要極限39
  2.7 無窮小的比較42
  2.8 函數的連續性45
  2.8.1 函數的連續性45
  2.8.2 函數的間斷點48
  2.9 連續函數的運算與初等函數的連續性50
  2.9.1 連續函數的四則運算50
  2.9.2 複合函數的連續性50
  2.9.3 反函數的連續性51
  2.9.4 初等函數的連續性52
  2.10 閉區間上連續函數的性質53
  2.10.1 最值定理53
  2.10.2 介值定理55
  本章知識點57
  習題259
  第3章 導數及其應用62
  3.1 導數的概念63
  3.1.1 導數的定義63
  3.1.2 單側導數66
  3.1.3 導數的幾何意義66
  3.1.4 函數可導性與連續性的關係67
  3.2 導數的運演算法則68
  3.2.1 基本初等函數的導數公式68
  3.2.2 導數的四則運演算法則68
  3.2.3 複合函數的求導法則69
  3.2.4 反函數的求導法則69
  3.3 高階導數70
  3.4 微分71
  3.4.1 微分的定義71
  3.4.2 微分的運演算法則73
  3.4.3 微分形式的不變性73
  3.4.4 微分在近似計算中的應用74
  3.5 微分中值定理75
  3.5.1 羅爾(Rolle)中值定理75
  3.5.2 拉格朗日(Lagrange)中值定理76
  3.6 洛必達法則77
  3.6.1 00型和∞∞型77
  3.6.2 其他未定型79
  3.7 函數的單調性與函數的極值81
  3.7.1 利用導數判斷函數的單調性81
  3.7.2 利用導數求函數的極值82
  3.7.3 函數的最值83
  本章知識點84
  習題388
  第4章 積分學91
  4.1 不定積分的概念91
  4.1.1 原函數91
  4.1.2 不定積分92
  4.1.3 不定積分的性質93
  4.2 換元積分法94
  4.2.1 第一類換元法(湊微分法)94
  4.2.2 第二類換元法96
  4.3 分部積分法98
  4.4 定積分100
  4.4.1 定積分概念的引入100
  4.4.2 定積分的幾何意義101
  4.4.3 定積分的性質102
  4.5 微積分基本公式102
  4.5.1 變上限定積分102
  4.5.2 牛頓-萊布尼茨公式103
  4.6 定積分的換元法與分部積分法104
  4.6.1 定積分的換元法104
  4.6.2 定積分分部積分法106
  ?*4.7 反常積分107
  4.7.1 無窮區間上的反常積分107
  4.7.2 無界函數的反常積分108
  4.8 定積分的應用110
  本章知識點112
  習題4115
  第5章 常微分方程118
  5.1 常微分方程的基本概念119
  5.2 一階常微分方程120
  5.2.1 可分離變數的微分方程120
  5.2.2 一階線性微分方程121
  ?*5.3 二階線性微分方程124
  5.3.1 二階線性齊次微分方程解的結構124
  5.3.2 二階線性非齊次微分方程解的結構125
  5.3.3 二階線性常係數齊次微分方程125
  5.3.4 二階線性常係數非齊次微分方程126
  本章知識點129
  習題5131
  第6章 線性方程組與行列式133
  6.1 二元一次線性方程組與二階行列式133
  6.2 三元一次線性方程組與三階行列式135
  6.3n?階行列式137
  6.3.1n?階行列式的表示137
  6.3.2n?階行列式的計算137
  6.4 行列式的性質138
  本章知識點149
  習題6150
  第7章 線性方程組與矩陣153
  7.1 線性方程組154
  7.1.1 二元一次線性方程組154
  7.1.2 三元一次線性方程組和多元一次線性方程組155
  7.1.3 線性方程組的表示與求解157
  7.2 矩陣158
  7.2.1 矩陣的定義158
  7.2.2 特殊的矩陣158
  7.3 矩陣的運算 159
  7.3.1 矩陣的相等159
  7.3.2 矩陣的加法160
  7.3.3 矩陣的數乘160
  7.3.4 矩陣與矩陣的乘法161
  7.4 方陣與行列式164
  7.5 逆矩陣165
  7.6 線性方程組的矩陣表示與求解171
  7.6.1 線性方程組的表示171
  7.6.2 線性方程組的求解171
  7.6.3 矩陣方程173
  7.7 高斯消元法174
  7.8 矩陣的初等變換177
  7.9 用初等變換求逆矩陣182
  7.9.1 矩陣的等價關係與等價標準型182
  7.9.2 初等變換求逆矩陣183
  本章知識點185
  習題7188
  第8章 線性方程組解的結構192
  8.1 向量192
  8.1.1 向量的定義192
  8.1.2 向量的線性運算193
  8.1.3 向量的線性表出 194
  8.1.4 向量組的線性相關性195
  8.1.5 向量組的極大無關組197
  8.2 齊次線性方程組的基礎解系199
  8.2.1 解的向量表示199
  8.2.2 齊次線性方程組的基礎解系200
  8.3 非齊次線性方程組的基礎解系203
  本章知識點207
  習題8209
  第9章 隨機事件與概率212
  9.1 隨機試驗212
  9.2 隨機事件213
  9.3 樣本空間213
  9.4 隨機事件的關係與運算214
  9.5 事件的運算規則216
  9.6 隨機事件的統計概率217
  9.7 排列與組合218
  9.8 古典概型219
  9.9 幾何概率221
  本章知識點225
  習題9227
  第10章 條件概率與事件的獨立性231
  10.1 條件概率與乘法公式231
  10.2 全概率公式234
  10.3 逆概率(Bayes)公式236
  10.4 隨機事件的獨立性237
  10.5n?重伯努利概型240
  本章知識點241
  習題10242
  第11章 隨機變數及其概率分佈246
  11.1 隨機變數246
  11.2 隨機變數的分佈函數247
  11.3 離散型隨機變數248
  11.4 離散型隨機變數的分佈函數250
  11.5 幾個重要的離散型隨機變數252
  11.5.1 兩點分佈252
  11.5.2 幾何分佈252
  11.5.3 二項分佈252
  11.5.4 泊松(Poisson)分佈254
  11.6 連續型隨機變數及其分佈255
  11.7 幾類常見的連續型隨機變數257
  11.7.1 均勻分佈257
  11.7.2 指數分佈258
  11.7.3 正態分佈258
  本章知識點260
  習題11262
  第12章 隨機變數的數字特徵266
  12.1 離散型隨機變數的數學期望266
  12.2 連續型隨機變數的數學期望268
  12.3 數學期望的性質270
  12.4 隨機變數的方差270
  12.4.1 離散型隨機變數的方差272
  12.4.2 連續型隨機變數的方差272
  12.5 方差的性質273
  ?*12.6 大數定律與中心極限定理274
  12.6.1 大數定律274
  12.6.2 中心極限定理275
  本章知識點276
  習題12277
  第13章 統計初步280
  13.1 總體與樣本280
  13.2 線性回歸282
  本章知識點284
  習題13285
  附錄A 常用三角函數公式288
  附錄B 習題參考答案與提示290
  參考文獻322
  

相關評論

同義詞:暫無同義詞