標籤: 暫無標籤

物理化學等實驗離不開對物理量的測量,測量有直接的,也有間接的。由於儀器、實驗條件、環境等因素的限

實驗誤差實驗誤差
制,測量不可能無限精確,物理量的測量值與客觀存在的真實值之間總會存在著一定的差異,這種差異就是實驗誤差。

1 實驗誤差 -影響因素

1.人為因素

由於人為因素所造成的誤差,包括誤讀、誤算和視差等。而誤讀常發生在游標尺、分厘卡等量具。游標尺刻度易造成誤讀一個最小讀數,如在10.00mm處常誤讀成10.02mm或9.98mm。分厘卡刻度易造成誤讀一個螺距的大小,如在10.20mm常誤讀成10.70mm或9.70mm。誤算常在計算錯誤或輸入錯誤數據時所發生。視差常在讀取測量值的方向不同或刻度面不在同一平面時所發生,兩刻度面相差約在0.3~0.4mm之間,若讀取尺寸在非垂直於刻度面時,即會產生的誤差量。為了消除此誤差,製造量具的廠商將游尺的刻劃設計成與本尺的刻劃等高或接近等高,(游尺刻劃有圓弧形形成與本尺刻劃幾近等高,游尺為凹V形且本尺為凸V形,因此形成兩刻劃等高。

2.量具因素

由於量具因素所造成的誤差,包括刻度誤差、磨耗誤差及使用前未經校正等因素。刻度分划是否準確,必須經由較精密的儀器來校正與追溯。量具使用一段時間後會產生相當程度磨耗,因此必須經校正或送修方能再使用。

3.力量因素

由於測量時所使用接觸力或接觸所造成撓曲的誤差。依據虎克定律,測量尺寸時,如果以一定測量力使測軸與機

實驗誤差實驗誤差
件接觸,則測軸與機件皆會局部或全面產生彈性變形,為防止此種彈性變形,測軸與機件應采相同材料製成。其次,依據赫茲(Hertz)定律,若測軸與機件均採用鋼時,其彈性變形所引起的誤差量。

應用量表測量工件時,量表固定於支持上,支架因被測量力會造成彈性變形,如圖2-4-3所示,在長度的斷面二次矩為,長的支柱為,縱彈性係數分別為、,因此測量力為P時,撓曲量為。為了防止此種誤差,可將支柱增大並盡量縮短測量軸線伸出的長度。除此之外,較大型量具如分厘卡、游標尺、直規和長量塊等,因本身重量與負載所造成的彎曲。通常,端點標準器在兩端面與垂直線平行的支點位置為0.577全長時,其兩端面可保持平行,此支點稱之為愛里點(AireyPoints)。線刻度標準器支點在其全長之0.5594位置,其全長彎曲誤差量為最小,此處稱之為貝塞爾點(BesselPoints)。

4.測量因素

測量時,因儀器設計或擺置不良等所造成的誤差,包括餘弦誤差、阿貝誤差等。餘弦誤差是發生在測量軸與待測表面成一定傾斜角度,如圖2-4-5所示其誤差量為,為實際測量長度。通常,餘弦誤差會發生在兩個測量方向,必須特別小心。例如測量內孔時,徑向測量尺寸需取最大尺寸,軸向測量需取最小尺寸。同理,測量外側時,也需注意取其正確位置。測砧與待測工件表面必須小心選用,如待測工件表面為平面時需選用球狀之測砧、工件為圓柱或圓球形時應選平面之測砧。阿貝原理(Abbe』Law)為測量儀器的軸線與待測工件之軸線需在一直在線。否則即產生誤差,此誤差稱為阿貝誤差。通常,假如測量儀器之軸線與待測工件之軸線無法在一起時,則需盡量縮短其距離,以減少其誤差值。若以游標尺測量工件為例,如圖2-4-6所示,其誤差為,因此欲減少游標尺測量誤差,需將本尺與游尺之間隙所造成之角減小及測量時應盡量靠近刻度線。若以量表測量工件為例,如圖2-4-7所示其量表之探針為球形,工件為圓柱,兩軸心有偏位量時,其接觸的誤差量為。若量表之探針和工件均為平面時,若兩平面傾斜一定角度時,其接觸的誤差量為如圖2-4-8所示,此誤差稱為正弦誤差。圖2-4-9所示為凸輪在機構設計的誤差分析圖,為了減少磨損,常將從動件的端頭設計成半徑為的圓球或圓柱體,兩者間的壓力角為,因此引起誤差為。

5.環境因素

測量時受環境或場地之不同,可能造成的誤差有熱變形誤差和隨機誤差為最顯著。熱變形誤差通常發生於因室

實驗誤差實驗誤差
溫、人體接觸及加工后工件溫度等情形下,因此必須在溫濕度控制下,不可用手接觸工件及量具、工件加工后待冷卻后才測量。但為了縮短加工時在加工中需實時測量,因此必須考慮各種材料之熱脹係數作為補償,以因應溫度材料的熱膨脹係數不同所造成的誤差。常用各種材料的熱膨脹係數如表2-4-2所示。通常,必須應用下列公式修正:CMR:工件在20℃時的長度

2 實驗誤差 -產生

根據誤差產生的原因及性質可分為系統誤差與偶然誤差兩類。

1.系統誤差

由於儀器結構上不夠完善或儀器未經很好校準等原因會產生誤差。例如,各種刻度尺的熱脹冷縮,溫度計、錶盤的刻度不準確等都會造成誤差。

由於實驗本身所依據的理論、公式的近似性,或者對實驗條件、測量方法的考慮不周也會造成誤差。例如,熱學實驗中常常沒有考慮散熱的影響,用伏安法測電阻時沒有考慮電錶內阻的影響等。

由於測量者的生理特點,例如反應速度,分辨能力,甚至固有習慣等也會在測量中造成誤差。

以上都是造成系統誤差的原因。系統誤差的特點是測量結果向一個方向偏離,其數值按一定規律變化。我們應根據具體的實驗條件,系統誤差的特點,找出產生系統誤差的主要原因,採取適當措施降低它的影響。

2.偶然誤差

在相同條件下,對同一物理量進行多次測量,由於各種偶然因素,會出現測量值時而偏大,時而偏小的誤差現

象,這種類型的誤差叫做偶然誤差。

產生偶然誤差的原因很多,例如讀數時,視線的位置不正確,測量點的位置不準確,實驗儀器由於環境溫度、濕

實驗誤差實驗誤差
度、電源電壓不穩定、振動等因素的影響而產生微小變化,等等,這些因素的影響一般是微小的,而且難以確定某個因素產生的具體影響的大小,因此偶然誤差難以找出原因加以排除。

但是實驗表明,大量次數的測量所得到的一系列數據的偶然誤差都服從一定的統計規律,這些規律有:

(1)絕對值相等的正的與負的誤差出現機會相同;

(2)絕對值小的誤差比絕對值大的誤差出現的機會多;

(3)誤差不會超出一定的範圍。

實驗結果還表明,在確定的測量條件下,對同一物理量進行多次測量,並且用它的算術平均值作為該物理量的測量結果,能夠比較好地減少偶然誤差。

二、誤差的表示

1.絕對誤差

設某物理量的測量值為x,它的真值為a,則x-a=ε;由此式所表示的誤差ε和測量值x具有相同的單位,它反映測量值偏離真值的大小,所以稱為絕對誤差。

有了絕對誤差以後.通常把測量結果表示成的形式,為多次測量的平均值。

2.相對誤差

誤差還有一種表示方法,叫相對誤差,它是絕對誤差與測量值或多次測量的平均值的比值,即或,並且通常將其結果表演示成非分數的形式,所以也叫百分誤差。

絕對誤差可以表示一個測量結果的可靠程度,而相對誤差則可以比較不同測量結果的可靠性。例如,測量兩條線段的長度,第一條線段用最小刻度為毫米的刻度尺測量時讀數為10.3毫米,絕對誤差為0.1毫米(值讀得比較準確時),相對誤差為0.97%,而用準確度為0.02毫米的遊標卡尺測得的結果為10.28毫米,絕對誤差為0.02毫米,相對誤差為0.19%;第二條線用上述測量工具分別測出的結果為19.6毫米和19.64毫米,前者的絕對誤差仍為0.1毫米,相對誤差為0.51%,後者的絕對誤差為0.02毫米,相對誤差為0.1%。比較這兩條線的測量結果,可以看到,用相同的測量工具測量時,絕對誤差沒有變化,用不同的測量工具測量時,絕對誤差明顯不同,準確度高的工具所得到的絕對誤差小。然而相對誤差則不僅與所用測量工具有關,而且也與被測量的大小有關,當用同一種工具測量時,被測量的數值越大,測量結果的相對誤差就越小。

3.引用誤差:儀錶某一刻度點讀數的絕對誤差Δ比上儀錶量程上限Am,並用百分數表示。

最大引用誤差:儀錶在整個量程範圍內的最大示值的絕對誤差Δm比儀錶量程上限Am,並用百分數表示。

4.標稱誤差

標稱誤差=(最大的絕對誤差)/量程x100%

3 實驗誤差 -分類

1.測量儀器的示值誤差

是指「測量儀器示值與對應輸入量的真值之差」(7.20條)。這是測量儀器的最主要的計量特性之一,其實質就是反映了測量儀器準確度的大小。示值誤差大則其準確度低,示值誤差小,則其準確度高。

示值誤差是對真值而言的。由於真值是不能確定的,實際上使用的是約定真值或實際值。為確定測量儀器的示值

實驗誤差實驗誤差
誤差,當其接受高等級的測量標準器檢定或校準時,則標準器復現的量值即為約定真值,通常稱為實際值,即滿足規定準確度的用來代替真值使用的量值。所以指示式測量儀器的示值誤差=示值-實際值;實物量具的示值誤差=標稱值-實際值。例如:被檢電流表的示值I為40A,用標準電流表檢定,其電流實際值為Io=41A,則示值40A的誤差Δ為Δ=I-Io=40-41=-1A。

則該電流表的示值比其真值小1A。如一工作玻璃量器的容量其標稱值V為1000ml,經標準玻璃量器檢定,其容量實際值Vo為1005ml,則量器的示值誤差Δ為:Δ=V-Vo=1000-1005=-5ml,即該工作量器的標稱值比其真值小5ml。

區別偏差是指「一個值減去其參考值」(5.17條),對於實物量具而言,偏差就是實物量具的實際值對於標稱值偏離的程度,即偏差=實際值-標稱值。例如有一塊量塊,其標稱值為10mm,經檢定其實際值為10.1mm,則該量塊的偏差為10.1-10=+0.1mm,說明此量塊相對10mm標準尺寸大了0.1mm;則此量塊的誤差為示值(標稱值)-實際值,即誤差=10-10.1=-0.1mm,說明此量塊比真值小了0.1mm,故此在使用時應加上0.1mm修正值。修正值是指為清除或減少系統誤差,用代數法加到未修正測量結果上的值。從上可見這三個概念其量值的關係:誤差=-偏差;誤差=-修正值;修正值=偏差。在日常計算和使用時要注意誤差和偏差的區別,不要相混淆。

測量儀器的示值誤差可簡稱為測量儀器的誤差,按照不同的示值、性質或條件,測量儀器的誤差又具有專門的術語。如基值誤差、零值誤差、固有誤差、偏移等。

2.〔測量儀器的〕基值誤差

它是指「為核查儀器而選用在規定的示值或規定的被測量值處的測量儀器誤差」(7.22條)。為了檢定或校準測量儀器,人們通常選取某些規定的示值或規定的被測量值,則在該值上測量儀器的誤差稱為基值誤差。

例如:選用規定的示值,如對普通準確度等級的衡器,載荷點50e和200e是必檢的(e是衡器的檢定分度值),它們在首次檢定時基值誤差分別不得超過±0.5e和±1.0e。如對於中準確度等級的衡器,載荷點500e和2000e是必須檢的,它們在首次時的基值誤差分別不得超過±0.5e和±1.0e。規定被測量值,如對於標準熱電偶的檢定或分度,通常選用鋅、銻及銅三個溫度固定點進行示值檢定或分度,則在此三個值上標準熱電偶的誤差,即為基值誤差。測量儀器的基值誤差可簡稱為基值誤差。

3.〔測量儀器的〕零值誤差

它是指「被測量為零值的基值誤差」(7.23條)。是指被測量為零值時,測量儀器示值相對於標尺零刻線之差值。也可說是測量儀器零位,即當被測量值為零時,測量儀器的直接示值與標尺零刻線之差。通常在測量儀器通電情況下,稱為電氣零位,在不通電的情況下稱為機械零位。零位在測量儀器檢定或校準或使用時十分重要,因為它無需用標準器就能準確地確定其零位值,如各種指示儀錶和千分尺、度盤秤等都具有零位調節器,可以作為檢定或校準或用作使用者調整,以便確保測量儀器的準確度。

通常測量儀器零值誤差均作為基值誤差對待,因為零值對考核測量儀器的穩定性、準確度作用十分重要。測量儀器的零值誤差可簡稱為零值誤差。

4.〔測量儀器的〕固有誤差

它是指「在參考條件下確定的測量儀器的誤差」(7.24條)。固有誤差通常也可稱為基本誤差,它是指測量儀器在參考條件下所確定的測量儀器本身所具有的誤差。主要來源於測量儀器自身的缺陷,如儀器的結構、原理、使用、安裝、測量方法及其測量標準傳遞等造成的誤差。固有誤差的大小直接反映了該測量儀器的準確度。一般固有誤差都是對示值誤差而言,因此固有誤差是測量儀器劃分準確度的重要依據。測量儀器的最大允許誤差就是測量儀器在參考條件下,反映測量儀器自身存在的所允許的固有誤差極限值。

提出固有誤差這一術語是相對於附加誤差而言的。附加誤差就是測量儀器在非標準條件下所增加的誤差。額定操作條件、極限條件等都屬於非標準條件。非標準(即參考)條件下工作的測量儀器的誤差,必然會比參考條件下的固有誤差要大一些,這個增加的部分就是附加誤差。它主要是由於影響量超出參考條件規定的範圍,對測量儀器帶來影響的所增加的誤差,即屬於外界因素所造成的誤差。因此測量儀器使用時與檢定、校準時因環境條件不同而引起的誤差,就是附加誤差;測量儀器在靜態條件下檢定、校準,而在實際動態條件下使用,則也會帶來附加誤差。測量儀器的固有誤差又可簡稱為固有誤差。

5.〔測量儀器的〕偏移、抗偏移性

測量儀器的偏移是指「測量儀器示值的系統誤差」(7.25條)。人們在用測量儀器測量時,總希望得到真實的被測量

實驗誤差實驗誤差
值,但實際上多次測量同一個被測量時,得到的是不同的示值。由於測量儀器存在著誤差,而形成測量儀器示值的系統誤差分量,我們稱之為測量儀器的偏移,又簡稱偏移。造成測量儀器的偏移原因是很多的,如儀器設計原理上的缺點,標尺、度盤安裝不正確,使用時受到測量環境變化的影響,測量或安裝方法的不完善,測量人員的因素以及測量標準器的傳遞誤差等。測量儀器示值的系統誤差,按其誤差出現的規律,可分為定值系統誤差和變值系統誤差。有的系統誤差分量是按線性變化、周期性變化或複雜規律變化的,為了確定測量儀器的偏移,通常用適當次數重複測量的示值誤差的平均值來估計,這樣可以排除測量儀器示值其隨機誤差的分量。由於存在著示值變值系統誤差,因此,在確定測量儀器偏移時,應考慮不同的測量點即示值的不同範圍。

測量儀器的偏移,直接影響著測量儀器的準確度,因為在大多數情況下,測量儀器的示值誤差主要決定於系統誤差,有時系統誤差比隨機誤差往往會大一個數量級,為什麼測量儀器要定期進行檢定、校準,主要就是為了確定測量儀器示值誤差的大小,並給以修正值進行修正,這就控制了測量儀器的偏移,確保了測量儀器的準確度。

測量儀器的抗偏移性是指「測量儀器給出不含系統誤差的示值的能力」(7.26條)。測量儀器示值的系統誤差是客觀存在的,由於它直接影響著測量儀器的準確度,因此我們應儘力設法減小它,則測量儀器給出的示值不含系統誤差的能力我們稱之為測量儀器的抗偏移性,可簡稱抗偏移性。

不含系統誤差是做不到的,但可以去減小它。實際上在測量儀器設計時必須考慮這一點,同時在測量儀器使用時也應考慮如何提高其抗偏移性。如從結構上保證指示器活動部分的平衡,可任意位置安裝使用的儀器保證其內部零部件平衡配重,減少元器件隨外界溫度的影響等。有的儀器從測量方法上提高其抗偏移性,如千分尺、指示儀器的零位調整,要求儀器水平位置安放,甚至有的儀器帶有水準泡,要求正確地安放被測件,有的選擇適當的測量方法,使系統誤差相互抵消,如採用交換法、替代法、補償法、對稱法等。當然還有一項十分重要的方法,就是讓測量儀器定期開展檢定、校準,確定測量儀器示值系統誤差的大小,用修正值加以修正,這是提高抗偏移性的重要措施。

為了在測量前就將示值的系統誤差產生的根源予以消除或減小,使用測量儀器的人員應對測量儀器中可能產生系統誤差的環節進行仔細分析,並採取相應措施是十分重要的。

4 實驗誤差 -系統誤差和偶然誤差判斷

從多次測量揭示出的實驗誤差稱為偶然誤差。

實驗誤差實驗誤差

不能從多次測量揭示出的實驗誤差稱為系統誤差。

系統誤差是由於儀器的某些不完善、測量技術上受到限制或實驗方法不夠完善沒有保證正確的實驗條件等原因產生,如停表測時間時,停表不準確,慢了,測的時間間隔總是偏小。

偶然誤差的特點是它的隨機性。如果我們對一些物理量只進行一次測量,其值可能比真值大也可能比真值小,這完全是偶然的,產生偶然誤差的原因無法控制,所以偶然誤差總是存在,通過多次測量取平均值可以減小偶然誤差,但無法消除。

5 實驗誤差 -相關詞條

化學物理實驗測量技術

 

6 實驗誤差 -資料來源

1.http://iask.sina.com.cn/b/556701.html?from=related

2.http://www.zqjyzx.jinedu.cn/wuli/ssgx/show.asp?id=947

 

上一篇[劇]    下一篇 [規則抽取]

相關評論

同義詞:暫無同義詞