標籤: 暫無標籤

整數(Integer):像-2,-1,0,1,2這樣的數稱為整數。(整數是表示物體個數的數,0表示有0個物體)整數是人類能夠掌握的最基本的數學工具。整數的全體構成整數集,整數集合是一個數環。在整數系中,自然數為0和正整數的統稱,稱0為零,稱-1、-2、-3、…、-n、… (n為整數)為負整數。正整數、零與負整數構成整數系。 一個給定的整數n可以是負數,非負數,零(n=0)或正數。

1數學分類

我們以0為界限,將整數分為三大類
1.正整數,即大於0的整數如,1,2,3······直到n。
2.0 ,既不是正整數,也不是負整數,它是介於正整數和負整數的數。
3.負整數,即小於0的整數如,-1,-2,-3······直到-n。
註:現中學數學教材中規定:零和正整數為自然數。
整數也可分為奇數和偶數兩類。
不僅表示「沒有」(「無」),更是表示空位的符號。中國古代用算籌計算數並進行運算時,空位不放算籌,雖無空 位記號,但仍能為位值記數與四則運算創造良好的條件。印度-阿拉伯命數法中的零(Zero)來自印度的(Sunya)字,其原意也是「空」或「空白」。
奇數
在整數中,不能被2整除的數叫做奇數,它跟偶數是相對的。日常生活中,人們通常把奇數叫做單數,它跟雙數是相對的。
性質及應用
如果不加特殊說明,我們所涉及的數都是整數,所採用的字母也表示整數。
定義:設a,b是給定的數,b≠0,若存在整數c,使得a=bc,則稱b整除a,記作b|a,並稱b是a的一個約數(因子),稱a是b的一個倍數,如果不存在上述c,則稱b不能整除a。
整數整除性的一些數碼特徵(即常見結論)
(1)1與0的特性:
1是任何整數的約數,即對於任何整數a,總有1|a.
0是任何非零整數的倍數,a≠0,a為整數,則a|0.
(2)若一個整數的末位是0、2、4、6或8,則這個數能被2整除。
(3)若一個整數的數字和能被3整除,則這個整數能被3整除。
(4) 若一個整數的末尾兩位數能被4整除,則這個數能被4整除。
(5)若一個整數的末位是0或5,則這個數能被5整除。
(6)若一個整數能被2和3整除,則這個數能被6整除。
(7)若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。例如,判斷133是否7的倍數的過程如下:13-3×2=7,所以133是7 的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍數,余類推。
(8)若一個整數的未尾三位數能被8整除,則這個數能被8整除。
(9)若一個整數的數字和能被9整除,則這個整數能被9整除。
(10)若一個整數的末位是0,則這個數能被10整除。
(11)若一個整數的奇位數字之和與偶位數字之和的差能被11整除,則這個數能被11整除。11的倍數檢驗法也可用上述檢查7的「割尾法」處理!過程唯一不同的是:倍數不是2而是1!
(12)若一個整數能被3和4整除,則這個數能被12整除。
(13)若一個整數的個位數字截去,再從餘下的數中,加上個位數的4倍,如果和是13的倍數,則原數能被13整除。如果差太大或心算不易看出是否13的倍數,則重複「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。
(14)若一個整數的個位數字截去,再從餘下的數中,減去個位數的5倍,如果差是17的倍數,則原數能被17整除。如果差太大或心算不易看出是否17的倍數,同樣重複之前的過程,直到能清楚判斷為止。
(15)若一個整數的個位數字截去,再從餘下的數中,加上個位數的2倍,如果差是19的倍數,則原數能被19整除。如果差太大或心算不易看出是否19的倍數,同樣重複之前的計算思路,直到能清楚判斷為止。
(16)若一個整數的末三位與3倍的前面的隔出數的差能被17整除,則這個數能被17整除。
(17)若一個整數的末三位與7倍的前面的隔出數的差能被19整除,則這個數能被19整除。
(18)若一個整數的末四位與前面5倍的隔出數的差能被23(或29)整除,則這個數能被23整除
完全平方數
完全平方數及其性質
能表示為某整數的平方的數稱為完全平方數,簡稱平方數。平方數有以下性質與結論:
(1)平方數的個位數字只可能是0,1,4,5,6,9;
(2)偶數的平方數是4的倍數,奇數的平方數被8除餘1,即任何平方數被4除的餘數只有可能是0或1;
(3)奇數平方的十位數字是偶數;
(4)十位數字是奇數的平方數的個位數一定是6;
(5)不能被3整除的數的平方被3除餘1,能被3整除的數的平方能被3整除。因而,平方數被9也合乎的餘數為0,1,4,7,且此平方數的各位數字的和被9除的餘數也只能是0,1,4,7;
(6)平方數的約數的個數為奇數;
(7)任何四個連續整數的乘積加1,必定是一個平方數。
(8)設正整數a,b之積是一個正整數的k次方冪(k≥2),若(a,b)=1,則a,b都是整數的k次方冪。一般地,設正整數a,b,c……之積是一個正整數的k次方冪(k≥2),若a,b,c……兩兩互素,則a,b,c……都是正整數的k次方冪。

2計算機分類

實現注意事項
「bit twiddling」方法(如 highestOneBit 和 numberOfTrailingZeros)的實現基於 Henry S. Warren, Jr.撰寫的 Hacker's Delight(Addison Wesley, 2002)中的一些有關材料。
上一篇[征納權利]    下一篇 [奇數]

相關評論

同義詞:暫無同義詞