評論(0

數字圖像處理

標籤:數字處理

數字圖像處理(Digital Image Processing)是通過計算機對圖像進行去除雜訊、增強、復原、分割、提取特徵等處理的方法和技術。數字圖像處理的產生和迅速發展主要受三個因素的影響:一是計算機的發展;二是數學的發展(特別是離散數學理論的創立和完善);三是廣泛的農牧業、林業、環境、軍事、工業和醫學等方面的應用需求的增長。

1簡介

數字圖像處理(Digital Image Processing)又稱為計算機圖像處理,它是指將圖像信號轉換成數字信號並利用
數字圖像處理

  數字圖像處理

計算機對其進行處理的過程。

2發展概況

數字圖像處理最早出現於20世紀50年代,當時的電子計算機已經發展到一定水平,人們開始利用計算機來處理圖形和圖像信息。數字圖像處理作為一門學科大約形成於20世紀60年代初期。早期的圖像處理的目的是改善圖像的質量,它以人為對象,以改善人的視覺效果為目的。圖像處理中,輸入的是質量低的圖像,輸出的是改善質量后的圖像,常用的圖像處理方法有圖像增強、復原、編碼、壓縮等。首次獲得實際成功應用的是美國噴氣推進實驗室(JPL)。他們對航天探測器徘徊者7號在1964年發回的幾千張月球照片使用了圖像處理技術,如幾何校正、灰度變換、去除雜訊等方法進行處理,並考慮了太陽位置和月球環境的影響,由計算機成功地繪製出月球表面地圖,獲得了巨大的成功。隨後又對探測飛船發回的近十萬張照片進行更為複雜的圖像處理,以致獲得了月球的地形圖、彩色圖及全景鑲嵌圖,獲得了非凡的成果,為人類登月創舉奠定了堅實的基礎,也推動了數字圖像處理這門學科的誕生。在以後的宇航空間技術,如對火星、土星等星球的探測研究中,數字圖像處理技術都發揮了巨大的作用。數字圖像處理取得的另一個巨大成就是在醫學上獲得的成果。
1972年英國EMI公司工程師Housfield發明了用於頭顱診斷的X射線計算機斷層攝影裝置,也就是我們通常所說的CT(Computer Tomograph)。CT的基該方法是根據人的頭部截面的投影,經計算機處理來重建截面圖像,稱為圖像重建。
1975年EMI公司又成功研製出全身用的CT裝置,獲得了人體各個部位鮮明清晰的斷層圖像。1979年,這項無損傷診斷技術獲得了諾貝爾獎,說明它對人類作出了劃時代的貢獻。與此同時,圖像處理技術在許多應用領域受到廣泛重視並取得了重大的開拓性成就,屬於這些領域的有航空航天、生物醫學工程、工業檢測、機器人視覺、公安司法、軍事制導、文化藝術等,使圖像處理成為一門引人注目、前景遠大的新型學科。隨著圖像處理技術的深入發展,從70年代中期開始,隨著計算機技術和人工智慧、思維科學研究的迅速發展,數字圖像處理向更高、更深層次發展。人們已開始研究如何用計算機系統解釋圖像,實現類似人類視覺系統理解外部世界,這被稱為圖像理解或計算機視覺。很多國家,特別是發達國家投入更多的人力、物力到這項研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的視覺計算理論,這個理論成為計算機視覺領域其後十多年的主導思想。圖像理解雖然在理論方法研究上已取得不小的進展,但它本身是一個比較難的研究領域,存在不少困難,因人類本身對自己的視覺過程還了解甚少,因此計算機視覺是一個有待人們進一步探索的新領域。

3目的方法

常用方法
數字圖像處理常用方法有以下幾個方面:
1)圖像變換:由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。因此,往往採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理)。新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用。
2 )圖像編碼壓縮:圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3 )圖像增強和復原:圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立「降質模型」,再採用某種濾波方法,恢復或重建原來的圖像。
4 )圖像分割:圖像分割是數字圖像處理中的關鍵技術之一。圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。雖然已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法。因此,對圖像分割的研究還在不斷深入之中,是圖像處理中研究的熱點之一。
5 )圖像描述:圖像描述是圖像識別和理解的必要前提。作為最簡單的二值圖像可採用其幾何特性描述物體的特性,一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法。
6 )圖像分類(識別):圖像分類(識別)屬於模式識別的範疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)后,進行圖像分割和特徵提取,從而進行判決分類。圖像分類常採用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網路模式分類在圖像識別中也越來越受到重視。

4應用工具

數字圖像處理的工具可分為三大類:
第一類包括各種正交變換和圖像濾波等方法,其共同點是將圖像變換到其它域(如頻域)中進行處理(如濾波)后,再變換到原來的空間(域)中。
第二類方法是直接在空間域中處理圖像,它包括各種統計方法、微分方法及其它數學方法。
第三類是數學形態學運算,它不同於常用的頻域和空域的方法,是建立在積分幾何和隨機集合論的基礎上的運算。
由於被處理圖像的數據量非常大且許多運算在本質上是并行的,所以圖像并行處理結構和圖像并行處理演算法也是圖像處理中的主要研究方向。

5應用領域

圖像是人類獲取和交換信息的主要來源,因此,圖像處理的應用領域必然涉及到人類生活和工作的方方面面。隨著人類活動範圍的不斷擴大,圖像處理的應用領域也將隨之不斷擴大。
2)生物醫學工程方面
數字圖像處理在生物醫學工程方面的應用十分廣泛,而且很有成效。除了上面介紹的CT技術之外,還有一類是對醫用顯微圖像的處理分析,如紅細胞、白細胞分類,染色體分析,癌細胞識別等。此外,在X光肺部圖像增晰、超聲波圖像處理、心電圖分析、立體定向放射治療等醫學診斷方面都廣泛地應用圖像處理技術。
4)工業和工程方面
在工業和工程領域中圖像處理技術有著廣泛的應用,如自動裝配線中檢測零件的質量、並對零件進行分類,印刷電路板疵病檢查,彈性力學照片的應力分析,流體力學圖片的阻力和升力分析,郵政信件的自動分揀,在一些有毒、放射性環境內識別工件及物體的形狀和排列狀態,先進的設計和製造技術中採用工業視覺等等。其中值得一提的是研製具備視覺、聽覺和觸覺功能的智能機器人,將會給工農業生產帶來新的激勵,目前已在工業生產中的噴漆、焊接、裝配中得到有效的利用。
6)文化藝術方面
目前這類應用有電視畫面的數字編輯,動畫的製作,電子圖像遊戲,紡織工藝品設計,服裝設計與製作,髮型設計,文物資料照片的複製和修復,運動員動作分析和評分等等,現在已逐漸形成一門新的藝術--計算機美術。
8)視頻和多媒體系統
目前,電視製作系統廣泛使用的圖像處理、變換、合成,多媒體系統中靜止圖像和動態圖像的採集、壓縮、處理、存貯和傳輸等。
10)電子商務
在當前呼聲甚高的電子商務中,圖像處理技術也大有可為,如身份認證、產品防偽、水印技術等。
總之,圖像處理技術應用領域相當廣泛,已在國家安全、經濟發展、日常生活中充當越來越重要的角色,對國計民生的作用不可低估。
處理信息量很大
數字圖像處理的信息大多是二維信息,處理信息量很大。如一幅256×256低解析度黑白圖像,要求約64kbit的數據量;對高解析度彩色512×512圖像,則要求768kbit數據量;如果要處理30幀/秒的電視圖像序列,則每秒要求500kbit~22.5Mbit數據量。因此對計算機的計算速度、存儲容量等要求較高。
各像素相關性大
數字圖像中各個像素是不獨立的,其相關性大。在圖像畫面上,經常有很多像素有相同或接近的灰度。就電視畫面而言,同一行中相鄰兩個像素或相鄰兩行間的像素,其相關係數可達0.9以上,而相鄰兩幀之間的相關性比幀內相關性一般說還要大些。因此,圖像處理中信息壓縮的潛力很大。
受人的因素影響較大
數字圖像處理后的圖像一般是給人觀察和評價的,因此受人的因素影響較大。由於人的視覺系統很複雜,受環境條件、視覺性能、人的情緒愛好以及知識狀況影響很大,作為圖像質量的評價還有待進一步深入的研究。另一方面,計算機視覺是模仿人的視覺,人的感知機理必然影響著計算機視覺的研究。例如,什麼是感知的初始基元,基元是如何組成的,局部與全局感知的關係,優先敏感的結構、屬性和時間特徵等,這些都是心理學和神經心理學正在著力研究的課題。

6主要優點

1. 再現性好數字圖像處理與模擬圖像處理的根本不同在於,它不會因圖像的存儲、傳輸或複製等一系列變換操作而導致圖像質量的退化。只要圖像在數字化時準確地表現了原稿,則數字圖像處理過程始終能保持圖像的再現。
數組,這主要取決於圖像數字化設備的能力。現代掃描儀可以把每個像素的灰度等級量化為16位甚至更高,這意味著圖像的數字化精度可以達到滿足任一應用需求。對計算機而言,不論數組大小,也不論每個像素的位數多少,其處理程序幾乎是一樣的。換言之,從原理上講不論圖像的精度有多高,處理總是能實現的,只要在處理時改變程序中的數組參數就可以了。回想一下圖像的模擬處理,為了要把處理精度提高一個數量級,就要大幅度地改進處理裝置,這在經濟上是極不合算的。
3.適用面寬圖像可以來自多種信息源,它們可以是可見光圖像,也可以是不可見的波譜圖像(例如X射線圖像、射線圖像、超聲波圖像或紅外圖像等)。從圖像反映的客觀實體尺度看,可以小到電子顯微鏡圖像,大到航空照片、遙感圖像甚至天文望遠鏡圖像。這些來自不同信息源的圖像只要被變換為數字編碼形式后,均是用二維數組表示的灰度圖像(彩色圖像也是由灰度圖像組合成的,例如RGB圖像由紅、綠、藍三個灰度圖像組合而成)組合而成,因而均可用計算機來處理。即只要針對不同的圖像信息源,採取相應的圖像信息採集措施,圖像的數字處理方法適用於任何一種圖像。
4.靈活性高圖像處理大體上可分為圖像的像質改善、圖像分析和圖像重建三大部分,每一部分均包含豐富的內容。由於圖像的光學處理從原理上講只能進行線性運算,這極大地限制了光學圖像處理能實現的目標。而數字圖像處理不僅能完成線性運算,而且能實現非線性處理,即凡是可以用數學公式或邏輯關係來表達的一切運算均可用數字圖像處理實現。

7圖書

內容簡介
本書是圖像處理理論與以MATLAB為主要工具的軟體實踐方法相結合的第一本書。特色在於重點強調如何通過開發新代碼來加強軟體工具。介紹MATLAB編程基礎知識之後,講述了圖像處理的主幹內容,包括灰度變換、線性和非線性空間濾波、頻率域濾波、圖像恢復與配准、彩色圖像處理、小波、圖像數據壓縮、形態學圖像處理、圖像分割、區域和邊界表示與描述,以及目標識別。
本書可供從事信號與信息處理、計算機科學與技術、通信工程、地球物理等專業的大專院校師生學習參考。
編輯推薦
本書的特色在於它重點強調怎樣通過開發新代碼來加強這些軟體工具。為了得到滿意的解決問題的方法,需要拓寬實驗工作,這在圖像處理中是很重要的。本書在介紹MATLAB編程基礎知識之後,講述了圖像處理的主幹內容,包括:灰度變換、線性和非線性空間濾波、頻率域濾波、圖像恢復與配准、彩色圖像處理、小波、圖像數據壓縮、形態學圖像處理、圖像分割、區域和邊界表示與描述,以及目標識別。

作者簡介

Rafael C. Gonzalez:於佛羅里達大學電氣工程系獲得博士學位,田納西大學電氣和計算機工程系教授,田納西大學圖像和模式分析實驗室、機器人和計算機視覺實驗室的創始人及IEEE會士。岡
《數字圖像處理》

  《數字圖像處理》

薩雷斯博士在模式識別、圖像處理和機器人領域編寫或與人合著了100多篇技術文章、兩本書和4本教材,他的書已被世界500多所大學和研究所採用。
Richard E. Woods:于田納西大學電氣工程系獲博士學位,IEEE會員。

8課程

《數字圖像處理》
本課程是空間信息工程系、攝影測量與遙感系開設的必修的專業基礎課之一。主要內容包括三部分:第一部分是數字圖像處理的基礎,由緒論、數字圖像處理的基本概念和圖像變換三章組成;第二部分是數字圖像處理的理論、方法和實例,包括圖像增強、圖像復原與重建、圖像編碼與壓縮三章;第三部分是圖像特徵提取與分析的基本理論、方法和實例,包括圖像分割、二值圖像處理與形狀分析、紋理分析、模板匹配與模式識別四章。
通過本課程的學習,要求學生掌握有關數字圖像處理的基本概念、方法、原理及應用,培養和增強學生創新意識和創新思維,提高實際動手能力和創新能力,為學生進一步學習圖像理解、數字攝影測量、遙感和地理信息系統等專業課程奠定基礎。
下一篇[鋸齒]

相關評論

同義詞:暫無同義詞