1引言

數學語言是數學思維的載體,數學學習實質上是數學思維活動,交流是思維活動中重要的環節,因此《課標》指出「動手實踐、自主探索與合作交流是學生學習數學的重要形式」,聯合國教科文組織將有效的數學交流作為學習數學的目標之一,實現有效交流的前提是學習和掌握數學語言。

2數學語言的特點

數學語言可分為抽象性數學語言直觀性數學語言,包括數學概念、術語、符號、式子、圖形等。數學語言又可歸結為文字語言、符號語言、圖形語言三類。各種形態的數學語言各有其優越性,如概念定義嚴密,揭示本質屬性;術語引入科學、自然,體系完整規範;符號指意簡明,書寫方便,且集中表達數學內容;式子將關係溶於形式之中,有助運算,便于思考;圖形表現直觀,有助記憶,有助思維,有益於問題解決。
數學語言作為數學理論的基本構成成分,具有「高度抽象性、嚴密的邏輯性、應用的廣泛性」。簡單地講,數學語言科學、簡潔、通用。
針對數學語言三大特點的教學策略
數學語言作為一種表達科學思想的通用語言和數學思維的最佳載體,包含著多方面的內容;其中較為突出的是敘述語言、符號語言及圖形語言,其特點是準確、嚴密、簡明。由於數學語言是一種高度抽象的人工符號系統,因此,它常成為數學教學的難點。一些學生之所以害怕數學,一方面在於數學語言難懂難學,另一方面是教師對數學語言的教學不夠重視,缺少訓練,以致不能準確、熟練地駕馭數學語言。現筆者根據數學語言的特點及數學要求,談談自己的認識。
邏輯過程
能夠揭示概念之間的各種邏輯關係,便於對數學結構從整體上理解,有助於學生對數學本質的理解與認識。
教學過程
一要善於推敲敘述語言的關鍵詞句。
敘述語言是介紹數學概念的最基本的表達形式,其中每一個關鍵的字和詞都有確切的意義,須仔細推敲,明確關鍵詞句之間的依存和制約關係。例如平行線的概念「在同一平面內不相交的兩條直線叫做平行線」中的關鍵詞句有:「在同一平面內」,「不相交」,「兩條直線」。教學時要著重說明平行線是反映直線之間的相互位置關係的,不能孤立地說某一條直線是平行線,要強調「在同一平面內」這個前提,從而加深對平行線的理解。
二要深入探究符號語言的數學意義。
符號語言是敘述語言的符號化,在引進一個新的數學符號時,首先要向學生介紹各種有代表性的具體模型,形成一定的感性認識,然後再根據定義,離開具體的模型對符號的實質進行理性的分析,數學符號語言,由於其高度的集約性、抽象性、內涵的豐富性,往往難以讀懂。這就要求學生對符號語言具有相當的理解能力,善於將簡約的符號語言譯成一般的數學語言,從而有利於問題的轉化與處理。
三要合理破譯圖形語言的數形關係。
圖形語言是一種視覺語言,通過圖形給出某些條件,其特點是直觀,便於觀察與聯想,觀察題設圖形的形狀、位置、範圍,聯想相關的數量或方程,這是「破譯」圖形語言的數形關係的基本思想。例如,長方體的表面積教學,學生初次接觸空間圖形的平面直觀圖,這種特殊的圖形語言,學生難於理解,教學時可採用以下步驟進行操作:
從模型到圖形,即根據具體的模型畫出直觀圖;
從圖形到模型,即根據所畫的直觀圖,用具體的模型表現出來,這樣的設計重在建立圖形與模型之間的視覺聯繫,為學生提供充分的感性認識,並使它們熟悉直觀圖的畫法結構和特點;
從圖形到符號,即把已有的直觀圖中的各種位置關係用符號表示;
從符號到圖形,即根據符號所表示的條件,準確地畫出相應的直觀圖。這兩步設計是為了建立圖像語言與符號語言之間的對應關係,利用圖形語言來輔助思維,利用符號語言來表達思維。
總之,在數學教學中,教師應指導學生嚴謹準確地使用數學語言,善於發現並靈活掌握各種數學語言所描述的條件及其相互轉化,以加深對數學概念的理解和應用。
四要重視命題條件關係教學,強化條件意識,寓抽象性於具體實例之中
條件關係實質是抽象的邏輯證據支撐關係的具體表現,強化條件關係教學,有助於培養縝密的邏輯推理能力。比如教學中應強調兩直線li:aix+biy+ci=0(i=1,2)平行的充要條件是a1b2=a2b1,並非兩直線的斜率相等。
五要注重思想方法教學,寓數學思維教學於數學語言教學之中
數學語言教學不能是孤立的,我們應當在數學語言教學過程中有意識歸納技巧和方法,提煉策略和升華思想,將思想方法教學溶於數學語言教學之中,通過教學實例展現:零星的觀點匯聚形成有用的思路和特殊的技巧,有效的思路演變為系統的方法和策略,科學的方法拓變升華為科學思想。比如由某些特殊方程的特殊解法可感悟到:試驗求值→變形整理→加減、代入技巧→消元法→化未知為已知的思想。
上一篇[同胚]  

相關評論

同義詞:暫無同義詞