標籤:科技工程

數模轉換器,又稱D/A轉換器,簡稱DAC,它是把數字量轉變成模擬的器件。D/A轉換器基本上由4個部分組成,即權電阻網路、運算放大器、基準電源和模擬開關。模數轉換器中一般都要用到數模轉換器,模數轉換器即A/D轉換器,簡稱ADC,它是把連續的模擬信號轉變為離散的數字信號的器件。

1簡介

DAC圖示
DAC圖示這就是一個數模轉換器。

2解析

常見方式
最常見的數模轉換器是將并行二進位的數字量轉換為直流電壓或直流電流,它常用作過程式控制制計算機系統的輸出通道,與執行器相連,實現對生產過程的自動控制。數模轉換器電路還用在利用反饋技術的模數轉換器設計中。

3性能指標

解析度
指最小輸出電壓(對應的輸入數字量只有最低有效位為「1」)與最大輸出電壓(對應的輸入數字量所有有效位全為「1」)之比。如N位D/A轉換器,其解析度為1/(2^N-1)。在實際使用中,表示解析度大小的方法也用輸入數字量的位數來表示。
轉換精度
D/A轉換器的轉換精度與D/A轉換器的集成晶元的結構和介面電路配置有關。如果不考慮其他D/A轉換誤差時,D/A的轉換精度就是解析度的大小,因此要獲得高精度的D/A轉換結果,首先要保證選擇有足夠解析度的D/A轉換器。同時D/A轉換精度還與外接電路的配置有關,當外部電路器件或電源誤差較大時,會造成較大的D/A轉換誤差,當這些誤差超過一定程度時,D/A轉換就產生錯誤。
在D/A轉換過程中,影響轉換精度的主要因素有失調誤差、增益誤差、非線性誤差和微分非線性誤差。

4溫度係數

在滿刻度輸出的條件下,溫度每升高1℃,輸出變化的百分數定義為溫度係數。
工作溫度範圍
一般情況下,影響D/A轉換精度的主要環境和工作條件因素是溫度和電源電壓變化。由於工作溫度會對運算放大器加權電阻網路等產生影響,所以只有在一定的工作範圍內才能保證額定精度指標。
較好的D/A轉換器的工作溫度範圍在-40℃~85℃之間,較差的D/A轉換器的工作溫度範圍在0℃~70℃之間。多數器件其靜、動態指標均
在25℃的工作溫度下測得的,工作溫度對各項精度指標的影響用溫度係數來描述,如失調溫度係數、增益溫度係數、微分線性誤差溫度係數等。
增益誤差
D/A轉換器的輸入與輸出傳遞特性曲線的斜率稱為D/A轉換增益或標度係數,實際轉換的增益與理想增益之間的偏差稱為增益誤差(或稱標度誤差)。增益誤差在消除失調誤差後用滿碼。
輸入時其輸出值與理想輸出值(滿量程)之間的偏差表示,一般也用LSB的份數或用偏差值相對滿量程的百分數來表示。
并行數模轉換
數模轉換有兩種轉換方式:并行數模轉換和串列數模轉換。圖1為典型的并行數模轉換器的結構。虛線框內的數碼操作開關和電阻網路是基本部件。圖中裝置通過一個模擬量參考電壓和一個電阻梯形網路產生以參考量為基準的分數值的權電流或權電壓;而用由數碼輸入量控制的一組開關決定哪一些電流或電壓相加起來形成輸出量。所謂「權」,就是二進位數的每一位所代表的值。例如三位二進位數「111「,右邊第1位的「權」是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。位數多的依次類推。圖2為這種三位數模轉換器的基本電路,參考電壓VREF在R1、R2、R3中產生二進位權電流,電流通過開關。當該位的值是「0」時,與地接通;當該位的值是「1」時,與輸出相加母線接通。幾路電流之和經過反饋電阻Rf產生輸出電壓。電壓極性與參考量相反。輸入端的數字量每變化1,僅引起輸出相對量變化1/23=1/8,此值稱為數模轉換器的解析度。位數越多解析度就越高,轉換的精度也越高。工業自動控制系統採用的數模轉換器大多是10位、12位,轉換精度達0.5~0.1%。
轉換原理
數字量是用代碼按數位組合起來表示的,對於有權碼,每位代碼都有一定的位權。為了將數字量轉換成模擬量,必須將每1位的代碼按其位權的大小轉換成相應的模擬量,然後將這些模擬量相加,即可得到與數字量成正比的總模擬量,從而實現了數字—模擬轉換。這就是組成D/A轉換器的基本指導思想。
圖11.1.1表示了4位二進位數字量與經過D/A轉換后輸出的電壓模擬量之間的對應關係。 由圖11.1.1還可看出,兩個相鄰數碼轉換出的電壓值是不連續的,兩者的電壓差由最低碼位代表的位權值決定。它是信息所能分辨的最小量,也就是我們所說的用1LSB(Least Significant Bit)表示。對應於最大輸入數字量的最大電壓輸出值(絕對值),用FSR(Full Scale Range)表示。
D/A轉換器由數碼寄存器、模擬電子開關電路、解碼網路、求和電路及基準電壓幾部分組成。數字量以串列或并行方式輸入、存儲於數碼寄存器中,數字寄存器輸出的各位數碼,分別控制對應位的模擬電子開關,使數碼為1的位在位權網路上產生與其權值成正比的電流值,再由求和電路將各種權值相加,即得到數字量對應的模擬量。
數模轉換器的位數
如果CCD的質量能夠滿足一定色彩位數的要求,為了獲得相應的輸出效果,就要求有相應位數的數模轉換實現數據採樣,才能獲得滿意的效果,如果CCD可以實現36位精度,卻使用了三個8位的數模轉換器,結果輸出出來就只剩下24位的數據精度了,這對於CCD是一種浪費,而如果使用三個16位的數模轉換器,是實現了48位的數據輸出,但效果與36位比較並無改善,對數模轉換器就是一種浪費了。
1. 數模轉換器是將數字信號轉換為模擬信號的系統,一般用低通濾波即可以實現。數字信號先進行解碼,即把數字碼轉換成與之對應的電平,形成階梯狀信號,然後進行低通濾波。
根據信號與系統的理論,數字階梯狀信號可以看作理想衝激採樣信號和矩形脈衝信號的卷積,那麼由卷積定理,數字信號的頻譜就是衝激採樣信號的頻譜與矩形脈衝頻譜(即Sa函數)的乘積。這樣,用Sa函數的倒數作為頻譜特性補償,由數字信號便可恢復為採樣信號。由採樣定理,採樣信號的頻譜經理想低通濾波便得到原來模擬信號的頻譜。
一般實現時,不是直接依據這些原理,因為尖銳的採樣信號很難獲得,因此,這兩次濾波(Sa函數和理想低通)可以合併(級聯),並且由於這各系統的濾波特性是物理不可實現的,所以在真實的系統中只能近似完成。
2. 模數轉換器是將模擬信號轉換成數字信號的系統,是一個濾波、採樣保持和編碼的過程。
模擬信號經帶限濾波,採樣保持電路,變為階梯形狀信號,然後通過編碼器,
使得階梯狀信號中的各個電平變為二進位碼。
3. 比較器是將兩個相差不是很小的電壓進行比較的系統。最簡單的比較器就是運算放大器。
我們知道,運算放大器在連有深度負反饋的條件下,會在線性區工作,有著增益很大的放大特性,在計算時往往認為它放大的倍數是無窮大。而在沒有反饋的條件下,運算放大器在線性區的輸入動態範圍很小,即兩個輸入電壓有一定差距就會使運算放大器達到飽和。如果同相端電壓較大,則輸出最大電壓,一般是+12V;如果反相端電壓較大,則輸出最小電壓,一般是-12V。這樣,就實現了電壓比較功能。
真正的電壓比較器還會增加一些外圍輔助電路,加強性能。
上一篇[編碼方式]    下一篇 [地震勘探儀器]

相關評論

同義詞:暫無同義詞