標籤: 暫無標籤

1 方程式論 -圖書信息

方程式論方程式論
  書名:方程式論

  出版社: 哈爾濱工業大學出版社; 第1版 (2011年3月1日)

  外文書名: equation theory

  叢書名: 數學統計學系列

  平裝: 226頁

  正文語種: 簡體中文

  開本: 16

  isbn: 7560332226, 9787560332222

  條形碼: 9787560332222

  商品尺寸: 24.8 x 17.2 x 1.6 cm

  商品重量: 399 g

2 方程式論 -內容簡介

  《方程式論》詳細地介紹了代數方程的各種解法及根的各種性質,對了解方程的歷史也是很好的素材。《方程式論》由哈爾濱工業大學出版社出版。

3 方程式論 -作者簡介

  作者:(英)W·S·伯恩賽德班登譯者:干仙椿

4 方程式論 -目錄

  緒論

  §1 定義

  §2 數字方程式及代數方程式

  §3 多項式

  第一章 多項式之普通性質

  §4 定理(多項式變數之值甚大時)

  §5 定理(多項式變數之值甚小時)

  §6 變數增減時多項式形式上之變化及導函數

  §7 有理整函數之連續

  §8 以二項式除多項式所得之商及其剩餘

  §9 作函數表法

  §10 多項式之圖表法

  §11 多項式之極大值極小值

  第二章 方程式之普通性質

  §12 定理一(關於方程式之實根)

  §13 定理二(關於方程式之實根)

  §14 定理三(關於方程式之實根)

  §15 普通方程式之根,虛根

  §16 定理(定方程式中根之數目)

  §17 等根

  §18 係數為實數之方程式

  §19 Descartes之符號規則,正根

  §20 Descartes之符號規則,負根

  §21 用Descartes規則證明虛根之存在

  §22 定理(以二已知數之代變數)

  第三章 根與係數之關係及根之對稱函數

  §23 根與係數之關係

  §24 應用

  §25 方程式相關二根之降次

  §26 1之立方根

  §27 根之對稱函數

  §28 對稱函數之理論

  第四章 方程式之變化

  §29 方程式之變化

  §30 變根之符號

  §31 以一定量乘方程式之根

  §32 逆根及逆方程式

  §33 增減方程式之根

  §34 消項

  §35 二項係數

  §36 三次方程式

  §37 四次方程式

  §38 同比異列變化

  §39 對稱函數之變化

  §40 變換方程式以其根之乘冪

  §41 一般之變化

  §42 平方差之三次方程式

  §43 三次方程式中根之性質之標準

  §44 差之一般方程式

  第五章 逆方程式及二項方程式之解答

  §45 逆方程式

  §46 二項方程式之普通性質,命題1

  §47 命題2

  §48 命題3

  §49 命題4

  §50 命題5

  §51 命題6

  §52 命題7

  §53 方程式xn-1=0之特根

  §54 以圓函數解二項方程式

  第六章 三次方程式及四次方程式之代數解法

  §55 方程式之代數解法

  §56 三次方程式之代數根

  §57 數字方程式之應用

  §58 化三次式為兩立方之差

  §59 以根之對稱函數解三次方程式

  §60 三次方程式中二根之同比異列關係

  §61 四次方程式之第一解法,Euler氏之假定

  §62 四次方程式之第二種解法

  §63 分解四次式為二次因子——第一法

  §64 分解四次式為二次因子——第二法

  §65 四次方程式之逆方程式

  §66 以根之對稱函數解四次方程式

  §67 四次方程式之平方差方程式

  §68 四次方程式中根之性質之準則

  第七章 導函數之性質

  §69 導函數之圖表法

  §70 多項式之極大極小值,定理

  §71 Rolle氏之定理

  §72 導函數之組織

  §73 復根,定理

  §74 復根之決定

  §75 定理一(變數經過方程式之一根)

  §76 定理二{變數經過方程式之一根)

  第八章 根之對稱函數

  §77 牛頓之定理,命題1

  §78 命題2

  §79 命題3

  §80 以根之乘方和之項表係數之式

  §81 對稱函數之級數及其次數和

  §82 根之對稱函數之計算

  §83 同次積

  第九章 根之極限

  §84 極限之定義

  §85 命題1

  §86 命題2

  §87 應用

  §88 命題3

  §89 下限及負根之極限

  §90 限制方程式

  第十章 區分方程式之根

  §91 一般解釋

  §92 Fourier及Budan之定理

  §93 定理之應用

  §94 根為虛數時定理之應用

  §95 前定理之推論

  §96 Sturm之定理

  §97 Sturm之定理,等根

  §98 Sturm定理之應用

  §99 方程式之根皆為實根之條件

  §100 四次方程式之根皆為實數之條件

  第十一章 數字方程式之解答

  §101 代數方程式及數字方程式

  §102 定理(關於可通約根)

  §103 牛頓之約數法則

  §104 約數法則之應用

  §105 限制約數數目之方法

  §106 復根之決定

  §107 牛頓之近似值方法

  §108 Homer氏之數字方程式解法

  §109 試約數之原理

  §110 Homer氏之簡法

  §111 方程式之根異常接近時Homer氏法則之應用

  §112 Lagrange氏之近似值方法

  §113 四次方程式之數字解答

  第十二章 複數及復變數

  §114 複數,圖表法

  §115 複數,加法及減法

  §116 乘法及除法

  §117 複數之他種運算

  §118 復變數

  §119 復變數函數之連續

  §120 復變數畫一小閉曲線時f(x)中幅角之相當變化

  §121 Cauehy氏之定理

  §122 普通方程式中根之數目

  §123 基本定理之第二證法

  §124 複數根之決定,三次方程式之解答

  §125 四次方程式之解法

  §126 續四次方程式之解法

  編輯手記

上一篇[ISO9000]    下一篇 [三體問題]

相關評論

同義詞:暫無同義詞