標籤:序列

時間序列是指將某種現象某一個統計指標在不同時間上的各個數值,按時間先後順序排列而形成的序列。時間序列法是一種定量預測方法,亦稱簡單外延方法。在統計學中作為一種常用的預測手段被廣泛應用。時間序列分析在第二次世界大戰前應用於經濟預測。二次大戰中和戰後,在軍事科學、空間科學、氣象預報和工業自動化等部門的應用更加廣泛。時間序列分析(Time series analysis)是一種動態數據處理的統計方法。該方法基於隨機過程理論和數理統計學方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題。

1時間序列

構成要素:現象所屬的時間,反映現象發展水平的指標數值。
(一)時間數列的構成因素
長期趨勢( T )現象在較長時期內受某種根本性因素作用而形成的總的變動趨勢
季節變動( S )現象在一年內隨著季節的變化而發生的有規律的周期性變動
循環變動( C )現象以若干年為周期所呈現出的波浪起伏形態的有規律的變動
不規則變動(I )是一種無規律可循的變動,包括嚴格的隨機變動和不規則的突發性影響很大的變動兩種類型
例如下表中年份是

2要素一:

時間
t;國內生產總值

3要素二:

指標數值
年份
國內生產總值
(億元)
年份
國內生產總值
(億元)
1994
1995
1996
1997
1998
1999
48 198
60 794
71 177
78 973
84 402
89 677
2000
2001
2002
2003
2004
2005
99 215
109 655
120 333
135 823
159 878
182 321
作用
1. 可以反映社會經濟現象的發展變化過程,描述現象的發展狀態和結果。
2. 可以研究社會經濟現象的發展趨勢和發展速度。
3. 可以探索現象發展變化的規律,對某些社會經濟現象進行預測。
4. 利用時間序列可以在不同地區或國家之間進行對比分析,這也是統計分析的重要方法之一。

4種類

(一)絕對數時間序列
1. 時期序列:由時期總量指標排列而成的時間序列 。
時期序列的主要特點有:
1)序列中的指標數值具有可加性。
2)序列中每個指標數值的大小與其所反映的時期長短有直接聯繫。
3)序列中每個指標數值通常是通過連續不斷登記匯總取得的。
2. 時點序列:由時點總量指標排列而成的時間序列
時點序列的主要特點有:
1)序列中的指標數值不具可加性。
2)序列中每個指標數值的大小與其間隔時間的長短沒有直接聯繫。
3)序列中每個指標數值通常是通過定期的一次登記取得的。
(二)相對數時間序列
把一系列同種相對數指標按時間先後順序排列而成的時間序列叫做相對數時間序列。
(三)平均數時間序列
平均數時間序列是指由一系列同類平均指標按時間先後順序排列的時間序列。

5編製原則

保證序列中各期指標數值的可比性
(一)時期長短最好一致
(二)總體範圍應該一致
(三)指標的經濟內容應該統一
(四)計算方法應該統一
(五)計算價格和計量單位可比

6變數特徵

非平穩性(nonstationarity,也譯作不平穩性,非穩定性):即時間序列變數無法呈現出一個長期趨勢並最終趨於一個常數或是一個線性函數。
波動幅度隨時間變化(Time-varying Volatility):即一個時間序列變數的方差隨時間的變化而變化這兩個特徵使得有效分析時間序列變數十分困難。
平穩型時間數列(Stationary Time Series)系指一個時間數列其統計特性將不隨時間之變化而改變者。

7分析方法

(一)指標分析法
通過時間序列的分析指標來揭示現象的發展變化狀況和發展變化程度。
(二)構成因素分析法
通過對影響時間序列的構成因素進行分解分析,揭示現象隨時間變化而演變的規律。

8分析模型

時間數列的組合模型
1 加法模型:Y=T+S+C+I (Y,T 計量單位相同的總量指標)(S,C,I 對長期趨勢產生的或正或負的偏差)
2 乘法模型:Y=T·S·C·I(常用模型) (Y,T 計量單位相同的總量指標)(S,C,I 對原數列指標增加或減少的百分比)

9預測

時間序列預測主要是以連續性原理作為依據的。連續性原理是指客觀事物的發展具有合乎規律的連續性,事物發展是按照它本身固有的規律進行的。在一定條件下,只要規律賴以發生作用的條件不產生質的變化,則事物的基本發展趨勢在未來就還會延續下去。
時間序列預測就是利用統計技術與方法,從預測指標的時間序列中找出演變模式,建立數學模型,對預測指標的未來發展趨勢做出定量估計。
上一篇[沉積相]    下一篇 [冰川周期]

相關評論

同義詞:暫無同義詞