標籤: 暫無標籤

1基本概述

極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函數的一門學科。
所謂極限的思想,是指用極限概念分析問題和解決問題的一種數學思想。用極限思想解決問題的一般步驟可概括為:對於被考察的未知量,先設法構思一個與它有關的變數,確認這變數通過無限過程的結果就是所求的未知量;最後用極限計算來得到這結果。
極限思想是微積分的基本思想,數學分析中的一系列重要概念,如函數的連續性、導數以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?」那麼可以概括地說:「數學分析就是用極限思想來研究函數的一門學科」。

2產生髮展

極限思想的發展
極限思想的進一步發展是與微積分的建立緊密相聯繫的。16世紀的歐洲處於資本主義萌芽時期,生產力得到極大的發展,生產和技術中大量的問題,只用初等數學的方法已無法解決,要求數學突破只研究常量的傳統範圍,而提供能夠用以描述和研究運動、變化過程的新工具,這是促進極限發展、建立微積分的社會背景。
起初牛頓和萊布尼茨以無窮小概念為基礎建立微積分,後來因遇到了邏輯困難,所以在他們的晚期都不同程度地接受了極限思想。牛頓用路程的改變數ΔS與時間的改變數Δt之比ΔS/Δt表示運動物體的平均速度,讓Δt無限趨近於零,得到物體的瞬時速度,並由此引出導數概念和微分學理論。他意識到極限概念的重要性,試圖以極限概念作為微積分的基礎,他說:「兩個量和量之比,如果在有限時間內不斷趨於相等,且在這一時間終止前互相靠近,使得其差小於任意給定的差,則最終就成為相等」。但牛頓的極限觀念也是建立在幾何直觀上的,因而他無法得出極限的嚴格表述。牛頓所運用的極限概念,只是接近於下列直觀性的語言描述:「如果當n無限增大時,an無限地接近於常數A,那麼就說an以A為極限」。
這種描述性語言,人們容易接受,現代一些初等的微積分讀物中還經常採用這種定義。但是,這種定義沒有定量地給出兩個「無限過程」之間的聯繫,不能作為科學論證的邏輯基礎。
正因為當時缺乏嚴格的極限定義,微積分理論才受到人們的懷疑與攻擊,例如,在瞬時速度概念中,究竟Δt是否等於零?如果說是零,怎麼能用它去作除法呢?如果它不是零,又怎麼能把包含著它的那些項去掉呢?這就是數學史上所說的無窮小悖論。英國哲學家、大主教貝克萊對微積分的攻擊最為激烈,他說微積分的推導是「分明的詭辯」。
貝克萊之所以激烈地攻擊微積分,一方面是為宗教服務,另一方面也由於當時的微積分缺乏牢固的理論基礎,連牛頓自己也無法擺脫極限概念中的混亂。這個事實表明,弄清極限概念,建立嚴格的微積分理論基礎,不但是數學本身所需要的,而且有著認識論上的重大意義。
極限思想的思維功能
極限思想在現代數學乃至物理學等學科中有著廣泛的應用,這是由它本身固有的思維功能所決定的。極限思想揭示了變數與常量、無限與有限的對立統一關係,是唯物辯證法的對立統一規律在數學領域中的應用。藉助極限思想,人們可以從有限認識無限,從「不變」認識「變」,從直線形認識曲線形,從量變認識質變,從近似認識精確。
無限與有限有本質的不同,但二者又有聯繫,無限是有限的發展。無限個數的和不是一般的代數和,把它定義為「部分和」的極限,就是藉助於極限的思想方法,從有限來認識無限的。
「變」與「不變」反映了事物運動變化與相對靜止兩種不同狀態,但它們在一定條件下又可相互轉化,這種轉化是「數學科學的有力槓桿之一」。例如,要求變速直線運動的瞬時速度,用初等方法是無法解決的,困難在於速度是變數。為此,人們先在小範圍內用勻速代替變速,並求其平均速度,把瞬時速度定義為平均速度的極限,就是藉助於極限的思想方法,從「不變」來認識「變」的。
曲線形與直線形有著本質的差異,但在一定條件下也可相互轉化,正如恩格斯所說:「直線和曲線在微分中終於等同起來了」。善於利用這種對立統一關係是處理數學問題的重要手段之一。直線形的面積容易求得,求曲線形的面積問題用初等的方法是不能解決的。劉徽用圓內接多邊形逼近圓,一般地,人們用小矩形的面積來逼近曲邊梯形的面積,都是藉助於極限的思想方法,從直線形來認識曲線形的。
量變和質變既有區別又有聯繫,兩者之間有著辯證的關係。量變能引起質變,質和量的互變規律是辯證法的基本規律之一,在數學研究工作中起著重要作用。對任何一個圓內接正多邊形來說,當它邊數加倍后,得到的還是內接正多邊形,是量變而不是質變;但是,不斷地讓邊數加倍,經過無限過程之後,多邊形就「變」成圓,多邊形面積便轉化為圓面積。這就是藉助於極限的思想方法,從量變來認識質變的。
近似與精確是對立統一關係,兩者在一定條件下也可相互轉化,這種轉化是數學應用於實際計算的重要訣竅。前面所講到的「部分和」、「平均速度」、「圓內接正多邊形面積」,分別是相應的「無窮級數和」、「瞬時速度」、「圓面積」的近似值,取極限后就可得到相應的精確值。這都是藉助於極限的思想方法,從近似來認識精確的。

3現代定義

設函數f(x)在點x。的某一去心鄰域內有定義,如果存在常數A,對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函數值f(x)都滿足不等式:
|f(x)-A|<ε
那麼常數A就叫做函數f(x)當 x→x。時的極限。

4建立概念

極限的思想方法貫穿於數學分析課程的始終。可以說數學分析中的幾乎所有的概念都離不開極限。在幾乎所有的數學分析著作中,都是先介紹函數理論和極限的思想方法,然後利用極限的思想方法給出連續函數、導數、定積分、級數的斂散性、多元函數的偏導數,廣義積分的斂散性、重積分和曲線積分與曲面積分的概念。如:
(1)函數在 點連續的定義,是當自變數的增量時,函數值的增量趨於零的極限。
(2)函數在 點導數的定義,是函數值的增量 與自變數的增量 之比 ,當 時的極限。
(3)函數在 上的定積分的定義,是當分割的細度趨於零時,積分和式 的極限。
(4)數項級數的斂散性是用部分和數列的極限來定義的。
(5)廣義積分是定積分 其中 為任意大於 的實數)當 時的極限,等等。

5解決問題

極限思想方法是數學分析乃至全部高等數學必不可少的一種重要方法,也是數學分析與初等數學的本質區別之處。數學分析之所以能解決許多初等數學無法解決的問題(例如求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題),正是由於它採用了極限的思想方法。
有時我們要確定某一個量,首先確定的不是這個量的本身而是它的近似值,而且所確定的近似值也不僅僅是一個而是一連串越來越準確的近似值;然後通過考察這一連串近似值的趨向,把那個量的準確值確定下來。這就是運用了極限的思想方法。
上一篇[物不知數]    下一篇 [AOC 2230Fm]

相關評論

同義詞:暫無同義詞