標籤:概率機率論

貝葉斯定理機率論或概率論是研究隨機性或不確定性等現象的數學。更精確地說,機率論是用來模擬實驗在同一環境下會產生不同結果的情狀。典型的隨機實驗有擲骰子、扔硬幣、抽撲克牌以及輪盤遊戲等。

1概述

概率論
概率論是研究隨機現象數量規律的數學分支。隨機現象是相對於決定性現象而言的。在一定條件下必然發生某一結果的現象稱為決定性現象。例如在標準大氣壓下,純水加熱到100℃時水必然會沸騰等。隨機現象則是指在基本條件不變的情況下,一系列試驗或觀察會得到不同結果的現象。每一次試驗或觀察前,不能肯定會出現哪種結果,呈現出偶然性。例如,擲一硬幣,可能出現正面或反面,在同一工藝條件下生產出的燈泡,其壽命長短參差不齊等等。隨機現象的實現和對它的觀察稱為隨機試驗。隨機試驗的每一可能結果稱為一個基本事件,一個或一組基本事件統稱隨機事件,或簡稱事件。

2起源

概率論是一門研究事情發生的可能性的學問,但是最初概率論的起源與賭博問題

骰子

骰子
有關。16世紀,義大利的學者吉羅拉莫·卡爾達諾(Girolam oCardano,1501——1576)開始研究擲骰子等賭博中的一些簡單問題。17世紀中葉,當時的法國宮廷貴族裡盛行著擲骰子遊戲,遊戲規則是玩家連續擲 4 次骰子,如果其中沒有 6 點出現,玩家贏,如果出現一次 6 點,則莊家(相當於賭場)贏。按照這一遊戲規則,從長期來看,莊家扮演贏家的角色,而玩家大部分時間是輸家,因為莊家總是要靠此為生的,因此當時人們也就接受了這種現象。
後來為了使遊戲更刺激,遊戲規則發生了些許變化,玩家這回用 2 個骰子連續擲 24 次,不同時出現2個6點,玩家贏,否則莊家贏。當時人們普遍認為,2 次出現 6 點的概率是一次出現 6 點的概率的 1 / 6 ,因此 6 倍於前一種規則的次數,也既是 24 次贏或輸的概率與以前是相等的。然而事實卻剛好相反,從長期來看,這回莊家處於輸家的狀態,於是他們去請教當時的數學家帕斯卡,求助其對這種現象作出解釋,這個問題的解決直接推動了概率論的產生。
有人對博弈中的一些問題發生爭論,其中的一個問題是「賭金分配問題」,他們決定請教法國數學家帕斯卡(Pascal)和費馬(Fermat)基於排列組合方法,研究了一些較複雜的賭博問題,他們解決了分賭注問題、賭徒輸光問題。他們對這個問題進行了認真的討論,花費了3年的思考,並最終解決了這個問題,這個問題的解決直接推動了概率論的產生。 概率與統計的一些概念和簡單的方法,早期主要用於賭博和人口統計模型。隨著人類的社會實踐,人們需要了解各種不確定現象中隱含的必然規律性,並用數學方法研究各種結果出現的可能性大小,從而產生了概率論,並使之逐步發展成一門嚴謹的學科。概率與統計的方法日益滲透到各個領域,並廣泛應用於自然科學、經濟學、醫學、金融保險甚至人文科學中。
數學家和精算師認為機率是在0至1之間之閉區間的數字,指定給一發生與失敗是隨機的「事件」。機率P(A)根據機率公理來指定給事件A。一事件A在一事件B確定發生後會發生的機率稱為B給之A的條件機率;其數值為
概率
(當P(B)不等於零時)。若B給之A的條件機率和A的機率相同時,則稱A和B為獨
概率論

  概率論

立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「,當A和B為獨立事件時。」中看出。機率論中的兩個重要概念為隨機變數和隨機變數之機率分佈這兩種概念。 作為數學統計基礎的概率論的創始人分別是法國數學家帕斯卡和費馬。
其他對概率論的發展作出重要貢獻的人還有荷蘭物理、數學家惠更斯,瑞士物理、數學家伯努利,法國數學家美弗,法國數學、天文學家拉普拉斯,德國數學家高斯,法國物理、數學家泊松,義大利數學、醫學家卡爾達諾以及蘇聯數學家柯爾莫哥洛夫。

3發展

隨著18、19世紀科學的發展,人們注意到在某些生物、物理和社會現象與機會遊戲之間有某種相似性,從而由機會遊戲起源的概率論被應用到這些領域中;同時這也大大推動了概率論本身的發展。使概率論成為數學的一個分支的奠基人是瑞士數學家j.伯努利,他建立了概率論中第一個極限定理,即伯努利大數定律,闡明了事件的頻率穩定於它的概率。隨後棣莫弗和p.s.拉普拉斯又導出了第 二個基本極限定理(中心極限定理)的原始
概率論

  概率論

形式。拉普拉斯在系統總結前人工作的基礎上寫出了《分析的概率理論》,明確給出了概率的古典定義,並在概率論中引入了更有力的分析工具,將概率論推向一個新的發展階段。19世紀末,俄國數學家p.l.切比雪夫、a.a.馬爾可夫、a.m.李亞普諾夫等人用分析方法建立了大數定律及中心極限定理的一般形式,科學地解釋了為什麼實際中遇到的許多隨機變數近似服從正態分佈。20世紀初受物理學的刺激,人們開始研究隨機過程。這方面a·n·柯爾莫哥洛夫、n.維納、a·a·馬爾可夫、a·r·辛欽、p·萊維及w·費勒等人作了傑出的貢獻。

4定義

公理化定義
設隨機實驗E的樣本空間為Ω。若按照某種方法,對E的每一事件A賦於一個實數P(A),且滿足以下公理:
非負性:P(A)≥0;2°規範性:P(Ω)=1;3°可列(完全)可加性對於兩兩互不相容的可列無窮多個事件A1,A2,……,An,……,有P(A1∪A2∪……∪An∪……)=P(A1)+P(A2)+……P(An)+……,則稱實數P(A)為事件A的概率。
定理1
(互補法則)
與A互補事件的概率始終是1-P(A)
證明:
事件A和ā是互補關係,由公理3和公理2可得
利用互補法則,可以解決下面這個問題,在兩次連續旋轉的輪盤遊戲中,至少有一次是紅色的概率是多少?
第一次旋轉紅色不出現的概率是19/37,按照乘法法則,第二次也不出現紅色的概率是(19/37)2=0.2637,因此在這裡互補概率就是指在兩次連續旋轉中至少有一次是紅色的概率,
定理3
如果若干事件A1,A2,...An∈S每兩兩之間是空集關係,那麼這些所有事件集合的概率等於單個事件的概率的和。
注意針對這一定理有效性的決定因素是A1...An事件不能同時發生(為互斥事件)。例如,在一次擲骰子中,得到5點或者6點的概率是: P=P(A5)+P(A6)
定理5
(任意事件加法法則)
對於事件空間S中的任意兩個事件A和B,有如下定理: 概率
證明:
事件A∪B由下面三個事件組成:首先根據定理4有:再根據定理3得:
例如,在由一共32張牌構成的斯卡特撲克牌中隨機抽出一張,其或者是"方片"或者是""的概率是多少?
事件A,B是或者的關係,且可同時發生,就是說抽出的這張牌即可以是"方片",又可以是"",A∩B(既發生A又發生B)的值是1/32,(從示意圖上也可以看出,即是方片又是只有一張,即概率是1/32),因此有如下結果:
從圖片上也可看出,符合這一條件的恰好是11張牌。注意到定理3是定理5的特殊情況,即A,B不同時發生,相應的P(A∩B)=0。
定理7
(無關事件乘法法則)
兩個不相關聯的事件A,B同時發生的概率是:注意到這個定理實際上是定理6(乘法法則)的特殊情況,如果事件A,B沒有聯繫,則有P(A|B)=P(A),以及P(B|A)=P(B)。觀察一下輪盤遊戲中兩次連續的旋轉過程,P(A)代表第一次出現紅色的概率,P(B)代表第二次出現紅色的概率,可以看出,A與B沒有關聯,利用上面提到的公式,連續兩次出現紅色的概率為:
忽視這一定理是造成許多玩家失敗的根源,普遍認為,經過連續出現若干次紅色后,黑色出現的概率會越來越大,事實上兩種顏色每次出現的概率是相等的,之前出現的紅色與之後出現的黑色之間沒有任何聯繫,因為球本身並沒有"記憶",它並不"知道"以前都發生了什麼。同理,連續10次出現紅色的概率為P=(18/37)10=0.0007

5完全概率

n個事件H1,H2,...Hn互相間獨立,且共同組成整個事件空間S,即
,以
這時A的概率可以表示為,證明:
概率
按照公理3,有根據乘法法則,因此有,
例如,一個隨機試驗工具由一個骰子和一個柜子中的三個抽屜組成,抽屜1里有14個白球和6個黑球,抽屜2里有2個白球和8個黑球,抽屜3里有3個白球和7個黑球,試驗規則是首先擲骰子,如果獲得小於4點,則抽屜1被選擇,如果獲得4點或者5點,則抽屜2被選擇,其他情況選擇抽屜3。然後在選擇的抽屜里隨機抽出一個球,最後抽出的這個球是白球的概率是:
P(白)=P(白|抽1)·P(抽1)+P(白|抽2)·P(抽2)+P(白|抽3)·P(抽3)
=(14/20)·(3/6)+(2/10)·(2/6)+(3/10)·(1/6)
=28/60=0.4667
從例子中可看出,完全概率特別適合於分析具有多層結構的隨機試驗的情況。

6貝葉斯定理

貝葉斯定理由英國數學家貝葉斯(ThomasBayes1702-1761)發展,用來描述兩個條件概率之間的關係,比如P(A|B)和P(B|A)。按照定理6的乘法法則,P(A∩B)=P(A)·P(B|A)=P(B)·P(A|B),可以立刻導出貝葉斯定理:如上公式也可變形為例如:一座別墅在過去的20年裡一共發生過2次被盜,別墅的主人有一條狗,狗平均每周晚上叫3次,在盜賊入侵時狗叫的概率被估計為0.9,問題是:在狗叫的時候發生入侵的概率是多少?
人們假設A事件為狗在晚上叫,B為盜賊入侵,則P(A)=3/7,P(B)=2/(20·365)=2/7300,P(A|B)=0.9,按照公式很容易得出結果:另一個例子,現分別有A,B兩個容器,在容器A里分別有7個紅球和3個白球,在容器B里有1個紅球和9個白球,現已知從這兩個容器里任意抽出了一個球,且是紅球,問這個紅球是來自容器A的概率是多少?
假設已經抽出紅球為事件B,從容器A里抽出球為事件A,則有:P(B)=8/20,P(A)=1/2,P(B|A)=7/10,按照公式,則有:應用
雖然概率論最早產生於17世紀,然而其公理體系只在20世紀的20至30年代才建立起來並得到迅速發展,在過去的半個世紀里概率論在越來越多的新興領域顯示了它的應用性和實用性,例如:物理、化學、生物、醫學、心理學、社會學、政治學、教育學,經濟學以及幾乎所有的工程學等領域。特別值得一提的是,概率論是今天數理統計的基礎,其結果被用做問卷調查的分析資料或者對經濟前景進行預測
上一篇[流行韓國街舞]    下一篇 [YOYO族]

相關評論

同義詞:暫無同義詞