標籤: 暫無標籤

利用模糊數學的基本思想和理論的控制方法。在傳統的控制領域裡,控制系統動態模式的精確與否是影響控制優劣的最主要關鍵,系統動態的信息越詳細,則越能達到精確控制的目的。然而,對於複雜的系統,由於變數太多,往往難以正確的描述系統的動態,於是工程師便利用各種方法來簡化系統動態,以達成控制的目的,但卻不盡理想。換言之,傳統的控制理論對於明確系統有強而有力的控制能力,但對於過於複雜或難以精確描述的系統,則顯得無能為力了。因此便嘗試著以模糊數學來處理這些控制問題。「模糊」是人類感知萬物,獲取知識,思維推理,決策實施的重要特徵。「模糊」比「清晰」所擁有的信息容量更大,內涵更豐富,更符合客觀世界

1簡介

Zadeh創立的模糊數學,對不明確系統的控制有極大的貢獻,自七十年代以後,一些實用的模糊控制器的相繼出現,使得我們在控制領域中又向前邁進了一大步,下面本文將對模糊控制理論做一番淺介。
模糊邏輯控制(Fuzzy Logic Control)簡稱模糊控制(Fuzzy Control),是以模糊集合論、模糊語言變數和模糊邏輯推理為基礎的一種計算機數字控制技術。1965年,美國的L.A.Zadeh創立了模糊集合論;1973年他給出了模糊邏輯控制的定義和相關的定理。1974年,英國的E.H.Mamdani首次根據模糊控制語句組成模糊控制器,並將它應用於鍋爐和蒸汽機的控制,獲得了實驗室的成功。這一開拓性的工作標誌著模糊控制論的誕生。
模糊控制實質上是一種非線性控制,從屬於智能控制的範疇。模糊控制的一大特點是既有系統化的理論,又有大量的實際應用背景。模糊控制的發展最初在西方遇到了較大的阻力;然而在東方尤其是日本,得到了迅速而廣泛的推廣應用。近20多年來,模糊控制不論在理論上還是技術上都有了長足的進步,成為自動控制領域一個非常活躍而又碩果累累的分支。其典型應用涉及生產和生活的許多方面,例如在家用電器設備中有模糊洗衣機、空調、微波爐、吸塵器、照相機和攝錄機等;在工業控制領域中有水凈化處理、發酵過程、化學反應釜、水泥窯爐等;在專用系統和其它方面有地鐵靠站停車、汽車駕駛、電梯、自動扶梯、蒸汽引擎以及機器人的模糊控制。

2概念

圖3.1為一般控制系統的架構,此架構包含了五個主要部分,即:定義變數、模糊化、知識庫、邏輯判斷及反模糊化,下文將對每一部分做簡單的說明:
模糊化
將輸入值以適當的比例轉換到論域的數值,利用口語化變數來描述測量物理量的過程,根據適合的語言值(linguistic value)求該值相對的隸屬度,此口語化變數稱為模糊子集合(fuzzy subsets)。
邏輯判斷
模仿人類下判斷時的模糊概念,運用模糊邏輯和模糊推論法進行推論,得到模糊控制訊號。該部分是模糊控制器的精髓所在。
變數選擇
選擇的控制變數要具有系統特性。控制變數選擇是否正確,對系統的性能將有很大的影響。例如做位置控制時,系統輸出與設定值的誤差量就可以當做模糊控制器的輸入變數。一般而言,可選用系統輸出、輸出變化量、輸出誤差、輸出誤差變化量及輸出誤差量總和等,作為模糊控制器的語言變數,具體如何選擇還有賴於工程師對於系統的了解和她的專業知識。因此,經驗和工程知識在選擇控制變數時扮演著相當重要的角色。
規則來源
模糊控制規則的取得方式:
(1) 專家的經驗和知識
模糊控制也稱為控制系統中的專家系統,專家的經驗和知識在其設計上有餘力的線索。人類在日常生活常中判斷事情,使用語言定性分析多於數值定量分析;而模糊控制規則提供了一個描述人類的行為及決策分析的自然架構;專家的知識通常可用if….then的型式來表述。
藉由詢問經驗豐富的專家,獲得系統的知識,並將知識改為if….then的型式,如此便可構成模糊控制規則。除此之外,為了獲得最佳的系統性能,常還需要多次使用試誤法,以修正模糊控制規則。
(2) 操作員的操作模式
現在流行的專家系統,其想法只考慮知識的獲得。專家可以巧妙地操作複雜的控制對象,但要將專家的訣竅加以邏輯化並不容易,這就需要在控制上考慮技巧的獲得。許多工業系統無法以一般的控制理論做正確的控制,但是熟練的操作人員在沒有數學模式下,卻能夠成功地控制這些系統:這啟發我們記錄操作員的操作模式,並將其整理為if….then的型式,可構成一組控制規則。
(3) 學習
為了改善模糊控制器的性能,必須讓它有自我學習或自我組織的能力,使模糊控制器能夠根據設定的目標,增加或修改模糊控制規則。
規則流程
實際應用模糊控制時,最初的問題是控制器的設計,即如何設計模糊控制法則。到目前為止模糊控制還沒能像傳統的控制理論一樣,藉由一套發展完整的理論推導來設計。下面簡單介紹一下其設計概念:
圖3.4所示為單輸入和單輸出的定值控制時間響應圖,若使用狀態評估模糊控制規則的形式,前件部變數為輸出的誤差E和在一個取樣周期內E的變化量CE,後件部變數為控制器輸出量U的變化量CU。則誤差、誤差變化量及控制輸出變化量的表示為:
其中E表誤差,R表設定值,Y表系統輸出,U表控制輸出,下標n表在時刻n時的狀態。由此可知,誤差變化量CE是隨輸出Y的斜率的符號變號,當輸出上升時,CE<0, 下降時CE>0。
本文所設計的模糊控制器之輸出輸入關係為:
E,CE→CU
在一般控制的計演算法上稱為速度型,這是由於其輸出為U對時間的微分,相當於速度的CU。在構造上也可採用以U為後件部變數的位置型,但前件部變數必需改用E的積分值。
由於由E與CE推論CU的構造中,CU與E的關係恰巧相當於積分關係U(t)=Ki∫E(t)dt,而CU與CE的關係相當於比例關係U(t)=KpE(t)的緣故,所以又稱為Fuzzy PI控制。
模糊控制

  模糊控制

設計模糊控制規則時,是在所設想對控制對象各階段的反應,記述採取哪一種控制比較好;首先選擇各階段的特徵點,記錄在模糊控制規則的前件部,然後思考在該點採取的動作,記錄在模糊控制規則的後件部。例如在圖3.6中,在第一循環之a1點附近,誤差為正且大,但誤差變化量幾乎是零,可以記為「E is PB and CE is ZO」在此點附近需要很大的控制輸出,記為」CU is PB」;同樣地,對於b1點、c1點、d1點等的附近,可分別得到如下的控制規則:
a1:If E is PB and CE is ZO then CU is PB
b1:If E is ZO and CE ix NB then XU is NB
c1:If E is NB and CE is ZO then CU is NB
d1:If E is ZO and CE is PB then CU is PB
在第二循環之a2,b2等之附近,其E和CE的絕對值比a1,b1點中之值相對減少,所以其CU值相對地也較小,其控制規則如下:
a2:If E is PM and CE is ZO then CU is PM
b2:If E is ZO and CE is NM then CU is NM
表3.2為依上述程序所構成的13條控制規則,其中縱列為E值,橫列為CE值,表中所列之值為控制輸出變化量CU值。由表3.2可知規則數最多可為49條,此表只使用了其中13條控制規則,設計者可依實際需要自行加減規則之數量,如19條、31條等等(表3.3,3.4所示),以改系統之響應。

3特點

  • 簡化系統設計的複雜性,特別適用於非線性、時變、模型不完全的系統。
  • 利用控制法則來描述系統變數間的關係。
  • 不用數值而用語言式的模糊變數來描述系統,模糊控制器不必對被控制對象建立完整的數學模式。
  • 模糊控制器是一語言控制器,便於操作人員使用自然語言自然語言進行人機對話。
  • 模糊控制器是一種容易控制、掌握的較理想的非線性控制器,具有較佳的適應性、強健性(Robustness)及較佳的容錯性(Fault Tolerance)。

4缺點

1.模糊控制的設計尚缺乏系統性,這對複雜系統的控制是難以奏效的。難以建立一套系統的模糊控制理論,以解決模糊控制的機理、穩定性分析、系統化設計方法等一系列問題;
2.如何獲得模糊規則及隸屬函數即系統的設計辦法,完全憑經驗進行;
3.信息簡單的模糊處理將導致系統的控制精度降低和動態品質變差。若要提高精度就必然增加量化級數,導致規則搜索範圍擴大,降低決策速度,甚至不能進行實時控制;
4.如何保證模糊控制系統的穩定性即如何解決模糊控制中關於穩定性和魯棒性問題還有待解決。

5系統

模糊控制以現代控制理論為基礎,同時與自適應控制技術、人工智慧技術、神經網路技術的相結合,在控制領域得到了空前的應用。
  • Fuzzy-PID複合控制
Fuzzy-PID複合控制將模糊技術與常規PID控制演算法相結合,達到較高的控制精度。當溫度偏差較大時採用Fuzzy控制,響應速度快,動態性能好;當溫度偏差較小時採用PID控制,靜態性能好,滿足系統控制精度。因此它比單個的模糊控制器和單個的PID調節器都有更好的控制性能。
  • 自適應模糊控制
這種控制方法具有自適應自學習的能力,能自動地對自適應模糊控制規則進行修改和完善,提高了控制系統的性能。對於那些具有非線性、大時滯、高階次的複雜系統有著更好的控制性能。
  • 參數自整定模糊控制
也稱為比例因子自整定模糊控制。這種控制方法對環境變化有較強的適應能力,在隨機環境中能對控制器進行自動校正,使得控制系統在被控對象特性變化或擾動的情況下仍能保持較好的性能。
  • 專家模糊控制EFC(Expert Fuzzy Controller)
模糊控制與專家系統技術相結合,進一步提高了模糊控制器智能水平。這種控制方法既保持了基於規則方法的價值和用模糊集處理帶來的靈活性,同時把專家系統技術的表達與利用知識的長處結合起來,能夠處理更廣泛的控制問題。
  • 仿人智能模糊控制
IC演算法具有比例模式和保持模式兩種基本模式的特點。這兩種特點使得系統在誤差絕對值變化時,可處於閉環運行和開環運行兩種狀態。這就能妥善解決穩定性、準確性、快速性的矛盾,較好地應用於純滯后對象。
  • 神經模糊控制(Neuro-Fuzzy Control)
這種控制方法以神經網路為基礎,利用了模糊邏輯具有較強的結構性知識表達能力,即描述系統定性知識的能力、神經網路的強大的學習能力以及定量數據的直接處理能力。
  • 多變數模糊控制
這種控制適用於多變數控制系統。一個多變數模糊控制器有多個輸入變數和輸出變數。

6模糊推論

解模糊化
在實行模糊控制時,將許多控制規則進行上述推論演算,然後結合各個由演算得到的推論結果獲得控制輸出;為了求得受控系統的輸出,必須將模糊集合B』解模糊化,在此將對三種常用解模糊化的方法做簡單的介紹:
(1)重心法
為模糊控制中段常用的方法,其定義為:
其中y°相當於模糊控制集合B』重心位置,圖3.5、3.6為圖解模糊關係Rc和最大-最小合成及重心法的推論演算過程。
(2) 高度法
亦為時常使用之解模糊化的方法之一,其定義為:
圖3.7為圖解使用高度法計算解模糊化值。
(3) 面積法
與重心法相類似,其定義為:
上一篇[心厥]    下一篇 [心熱證]

相關評論

同義詞:暫無同義詞