標籤: 暫無標籤

液體有流動性,把它放在什麼形狀的容器中它就有什麼形狀。

1簡介

液態
yè tài
1.物質的液體狀態。物質存在的一種形態,可以流動、變形,可微壓縮。
2.液態時,分子間主要起作用的力是范德華力。
范德華力是由分子間的偶極異極相吸造成的。所以不像化學鍵有固定的角度,范德華力只有個大概的方向。這也是液體為什麼會流動而固體不能的原因。
當液態物體分子間的范德華力被打破時(加熱,使單個分子動能增大),物體由液態變為氣態;當液態物體分子間熱運動減小,小到分子間化學鍵可以形成,從而化學鍵在分子間佔主導地位時,液體變為固體。

2相關概念

物質存在的狀態一般有:固態、液態、氣態
液化:物質從氣態變成液態的過程叫液化;
液態:水;冰變水——融化。
一般來講,講到液態一般就會講到液化,以及汽化。

3特點

液體與固體不同,液體還有「各向同性」特點(不同方向上物理性質相同),這是因為,物體由固態變成液態的時候,由於溫度的升高使得分子或原子運動劇烈,而不可能再 保持原來的固定位置,於是就產生了流動。但這時分子或原子間的吸引力還比較大,使它們不會分散遠離,於是液體仍有一定的體積。實際上,在液體內部許多小的區域仍存在類似晶體的結構——「類晶區」。流動性是「類晶區」彼此間可以移動形成的。我們打個比喻,在柏油路上送行的「車流」,每輛汽車內的人是有固定位置的一個「類晶區」,而車與車之間可以相對運動,這就造成了車隊整體的流動。
液態與氣態不同,它有一定的體積。液態又與固態不同,它有流動性,因而沒有固定的形狀。除液晶外,液態與非晶態固體一樣均呈各向同性,這些都是液態的主要宏觀特徵。

4微觀結構

分子的熱運動
實驗充分說明,液體中的分子與晶體及非晶態固體中的分子和原子一樣在平衡位置附近作振動。在同一單元中的液體分子的振動方向基本一致,不同單元中分子的振動方向各不相同,這一點與多晶體有些類似。但是,在液體中這種狀況僅能保持一短暫的時間。以後,由於漲落等其他因素,單元會被破壞,並重新組成新的單元。液體中存在一定的分子間隙也為單元的破壞及重新組建創造了條件。雖然任一分子在各個單元中居留的時間長短不一,但在一定的溫度、壓強下,液體分子在單元中的平均居留時間卻是相同的。一般分子在一個單元中平均振動102~103次。對於液態金屬,的數量級為10-10s。
可將液體分子的熱運動作如下比喻。所有分子都過著游牧生活,短時間的遷移和比較長期的定居生活相互交替。兩次遷移之間所經歷的平均定居時間比分子在單元中振動的周期長得多。的大小與分子力及分子熱運動這一對矛盾有關。分子排列得越緊密,分子間的作用力越強,分子就越不易移動,也越大;溫度越高,分子熱運動越劇烈,越小,分子也就越易遷移。在通常情況下,外力作用在液體上的時間總比平均定居時間大得多。在這段時間內,液體分子已遊歷了很多個單元,從而產生宏觀位移,液體的流動就這樣產生。若外力作用時間遠小於,液體不會流動。
膨脹係數
實驗發現,通常在壓強不變時液體的體脹係數隨溫度升高而略有增加,在溫度不變時又隨壓強增大而略有減小。液體的體脹係數與下列兩個因素有關:一是分子勢能曲線中吸引力與排斥力的不對稱性,這與產生固體熱膨脹的機理類同;二是液體內部存在空隙,這種空隙使液體有類似海綿的特徵,所以液體的體脹係數比固體大些。
黏性
與氣體不同,液體的黏性較氣體大,且隨溫度的升高而降低。這是因為液體分子受到它所在單元中其他分子作用力的束縛,不可能在相鄰兩層流體間自由運動而產生動量輸運之故。液體的黏性與單元對分子的束縛力直接有關。單元對分子束縛的強弱體現在單元中分子所在勢阱的深度Ed的大小上,而Ed又決定了分子在單元中平均定居時間。因為越長,流體的流動性就越小,而流動性小的流體的黏度大。可估計到,η應該與有類似的變化關係。實驗證實,液體的黏度
η=η0·exp(Ed/kT)
其中η0是某一常數。
上一篇[丹尼爾·笛福]    下一篇 [末秩]

相關評論

同義詞:暫無同義詞