標籤: 暫無標籤

濾子在數學中是指偏序集合的特殊子集。

1 濾子 -介紹

  在數學中,濾子是偏序集合的特殊子集。經常使用的特殊情況是:要考慮的有序集合只是某個集合的冪集,並用集合包含來排序。濾子出現在序理論和格理論中,還可以在它們所起源的拓撲學中找到。濾子的對偶概念是理想。
  濾子是昂利·嘉當在1937年發明的並隨後在尼古拉·布爾巴基的書《Topologie Générale》中作為對 E. H. Moore 和 H. L. Smith 在1922年發明的網的概念的替代。

2 濾子 -形式定義

  濾子的最一般定義是:
  偏序集合 (P,≤) 的非空子集 F 是濾子,若 F 滿足:
  ?x, y ∈ F,?z ∈ F,使 z ≤ x 且 z ≤ y。(F 是濾子基)
  F 是上閉的:?x ∈ F,y ∈ P,x ≤ y ? y ∈ F。
  濾子最初只是為格定義的。在這種情況下,上述定義可以被特徵化為如下等價陳述: 格 (P,≤) 的非空子集 F是濾子,當且僅當它是閉合在有限的交(下確界)下的上閉集合,就是說,對於所有在F中的x,y,我們找到xy也在F中。
上一篇[孟宗竹]    下一篇 [毛柿]

相關評論

同義詞:暫無同義詞