標籤:熱學定律熵值

熵增原理就是在孤立熱力系所發生的不可逆微變化過程中,熵的變化量永遠大於系統從熱源吸收的熱量與熱源的熱力學溫度之比。可用於度量過程存在不可逆性的程度

1簡介

系統經絕熱過程由一狀態達到另一狀態熵值不減少——熵增原理(the principle of the increase of entropy)
對絕熱過程,ΔQ = 0 ,有ΔS(絕熱)≥ 0(大於時候不可逆,等於時候可逆) 或 dS(絕熱)≥0 (>0不可逆;=0可逆)
熵增原理表明,在絕熱條件下,只可能發生dS≥0 的過程,其中dS = 0 表示可逆過程;dS>0表示不可逆過程,dS<0 過程是不可能發生的。但可逆過程畢竟是一個理想過程。因此,在絕熱條件下,一切可能發生的實際過程都使系統的熵增大,直到達到平衡態。
玻爾茲曼曾經通過仔細研究兩個球形分子碰撞前與碰撞后的景象,宣稱能證明碰撞前的熵小於撞后的熵,因此熵在增加。但是他的證明是錯的,原因是如果是這樣,同樣的論證過程可以運用在時間的反方向上,那麼也應該是熵增,時間反方向上熵增,也就說明正方向上是熵減。
那什麼是對的呢?基本而言,無論從正向時間或反向時間看,熵都有往最大值跑的趨勢。也就是說只能這麼說從長時間來看,熵處於最大熵的可能性要大點。而熵增或熵減並不是能夠從物理上推論出來的物理原理。
那問題是:為什麼我們這個宇宙處於一個熵增的過程?目前物理界的解釋是,因為我們這個世界的初始條件是熵極小的大爆炸前的那個點,而這決定了這個世界從今往後要經歷一段非常長的熵增過程。(參考羅傑斯.彭羅斯的著作《the Road to the Reality》(現實之路))
(參照:多媒體CAI物理化學第四版:大連理工大學出版社)

2重要地位

熵增原理是一條與能量守恆有同等地位的物理學原理。
熵增原理是適合熱力學孤立體系的,能量守恆定律是描述自然界普遍適用的定律。 熵增定律僅適合於孤立體系,這是問題的關鍵。實際上,絕對的聯繫和相對的孤立的綜合,才是事物運動的本質。雖然從處理方法上講,假定自然界存在孤立過程是可以的。但是從本質上講,把某一事物從自然界中孤立出來是帶有主觀色彩的。當系統不再人為地被孤立的時候,它就不再是只有熵增,而是既有熵增,又有熵減了。於是可以看到能量守恆定律仍然有效。
熵總是聯繫著大量子系統,而人類社會正是這樣一個複雜的體系。在人類社會中不僅有熵增,而且有熵減,這就使關於人類的科學與整個自然科學產生分歧,出現自然科學與人文科學的矛盾。

3三個基本定律

我們知道,在科學中有三個基本定律,即質量守恆定律,能量守恆定律和電荷守恆定律。質量、能量守恆定律在微觀領域又被推廣為質、能相關定律。質量守恆定律,能量守恆定律和質能相關定律在數學上表示為等式。而熵增定律則是不等式 , 即在孤立系中 , 熵增總是大於或等於零 ( △ S ≥ 0) 。在這種等式與不等式的差別中,隱含著深刻的意義。
從系統三象性的基點來看,問題是這樣的:任何系統狀態 ( 點 ) 上物質性、能量性、信息性不可分離地共存著,但物質 ( 質量 ) 和能量是守恆的,而信息卻 ( 信息是負熵 ) 不守恆。
由於在孤立系中熵總是增加的,而熵是「混亂度」。那麼,系統在孤立情況下總是自動地趨向於混亂與無序,這就與生物的有序化發展產生矛盾,出現克勞胥斯與達爾文的分裂。所以熵並非「混亂度」的表徵,不要把熵和「混亂度」簡單的聯繫在一起。
由於熵總是增加的,因而過程就出現單一的時間之矢,從而是不可逆的,這就與牛頓力學的可逆時間產生矛盾,出現牛頓、愛因斯坦與普里戈金、哈肯的分裂。
熵總是聯繫著大量子系統,而人類社會正是這樣一個複雜的體系。在人類社會中不僅有熵增,而且有熵減,這就使關於人類的科學與整個自然科學產生分歧,出現自然科學與人文科學的矛盾。
質量守恆定律和能量守恆定律是自然界的普適定律,而熵增定律則適合於熱力學孤立體系。任一質點或任一質點系都適合於質量守恆定律和能量守恆定律,但一個質點就談不上熵增,非孤立體系的熵也不一定增加。
上一篇[《鏡檻》]    下一篇 [邦彥畫像石刻]

相關評論

同義詞:暫無同義詞