評論(0

物質結構理論

標籤: 暫無標籤

1物質結構理論

物質結構理論
在自然界中,我們看到物質以各種各樣的形態存在著:花蟲鳥獸、山河湖海、不同膚色的人種、各種美麗的建築……大到星球宇宙,小到分子、原子、電子等極微小的粒子,真是千姿百態斗奇爭艷。大自然自身的發展,造就了物質世界這種絢麗多彩的宏偉場面。物質具體的存在形態有多少,這的確是難以說清的。但是,經過物理學的研究,千姿百態的物質都可以初步歸納為兩種基本的存在形態:「實物」和「場」。
「實物」具有的共同特點是:質量集中在某一空間,一般有比較確定的界面(氣體的界面雖然模糊,但它又是由一個個實物粒子構成)。本文開頭所舉的各例都屬於實物。
「場」則是看不見摸不著的物質,它可以充滿全部空間,它具有「可入性」。例如大家熟知的電磁波,它可以將電台天線發射的信號通過空間傳送到千家萬戶的收音機或電視機。可以概括地說,「場」是實物之間進行相互作用的物質形態。
什麼是「物態」呢?日常所知的固態、液態和氣態就是三種「物態」。為什麼要有「物態」的概念?因為實物的具體形態太多了,將它們歸納一下能否分成較少的幾類?這就產生了「物態」的概念。「物態」是按屬性劃分的實物存在的基本形態,它都表現為大量微小物質粒子作為一個大的整體而存在的集合狀態。以往人們只知道有固態、液態和氣態三種物態,隨著科學的發展,在大自然中又發現了多種「物態」。人類迄今知道的「物態」已達10餘種之多。
日常生活中最常見的物質形態是固態、液態和氣態,從構成來說這類狀態都是由分子或原子的集合形式決定的。由於分子或原子在這三種物態中運動狀況不同,而使我們看到了不同的特徵。
玻色—愛因斯坦凝聚態
玻色-愛因斯坦凝聚是原子在冷卻到絕對零度附近時所呈現出的一種氣態的、超流性的物態。1995年科羅拉多大學鮑爾德分校的埃里克·康奈爾和卡爾·威曼使用氣態的銣原子在170納開爾文的低溫下首次獲得了玻色-愛因斯坦凝聚。在這種狀態下,幾乎全部原子都聚集到能量最低的量子態,形成一個宏觀的量子狀態
所有原子的量子態都束聚於一個單一的量子態的狀態被稱為玻色凝聚或玻色-愛因斯坦凝
玻色-愛因斯坦凝聚態
聚。1920年代玻色和阿爾伯特·愛因斯坦在玻色的關於光子的統計力學的研究的基礎上對這個狀態做了預言。2005年7月22日烏得勒支大學的學生羅迪·玻因克在保羅·埃侖費斯特的個人擋案中發現了1924年12月愛因斯坦手寫的原文的草稿。玻色和愛因斯坦的研究的結果是遵守玻色-愛因斯坦統計的玻色氣體。玻色-愛因斯坦統計是描寫玻色子的統計分佈的理論。玻色子,其中包括光子和氦-4之類的原子,可以分享同一量子態。愛因斯坦推測將玻色子冷卻到非常低的溫度后它們會「落入」(「凝聚」)到能量最低的可能量子態中,導致一種全新的相態。
一個單純的三維的氣體的臨界溫度為(氣體處在的外部勢能是恆定的):
玻色-愛因斯坦凝聚態
T_c=\left(\frac{n}{\zeta(3/2)}\right)^{2/3}\frac{2\pih^2}{mk_B}
其中:
T_c臨界溫度
n粒子密度
m每個玻色子的質量
h普朗克常數
k_B玻爾茲曼常數
zeta黎曼ζ函數:\zeta(3/2)≈2.6124.

2 玻色-愛因斯坦凝聚態 - 發現

1938年彼得·卡比薩、約翰·艾倫和冬·麥色納(DonMisener)發現氦-4在降溫到2.2開爾文時會成為一種叫做
玻色-愛因斯坦凝聚態
超液體的新的液體狀態。超液的氦有許多非常不尋常的特徵,比如它的黏度為零,其漩渦是量子化的。很快人們就認識到超液體的原因是玻色-愛因斯坦凝聚。事實上,康奈爾和威曼發現的氣態的玻色-愛因斯坦凝聚呈現出許多超液體的特性。但一般氦-4不被看作是玻色-愛因斯坦凝聚,因為它是液態的,液態的原子之間的相互作用比較強,初始的玻色-愛因斯坦理論必須被強烈改變后才能用來描寫超液體。
最早的「真正」的玻色-愛因斯坦凝聚是康奈爾和威曼及其助手在天體物理實驗室聯合研究所於1995年6月5日製造成功的。他們使用激光冷卻和磁阱中的蒸發冷卻將約2000個稀薄的氣態的銣-87原子的溫度降低到170nK后獲得了玻色-愛因斯坦凝聚。四個月後,麻省理工學院的沃爾夫岡·凱特勒使用鈉-23獨立地獲得了玻色-愛因斯坦凝聚。凱特勒的凝聚較康奈爾和威曼的含有約100倍的原子,這樣他可以用他的凝聚獲得一些非常重要的結果,比如他可以觀測兩個不同凝聚之間的量子衍射。2001年康奈爾、威曼和凱特勒為他們的研究結果共享諾貝爾物理獎。
康奈爾、威曼和凱特勒的結果引起了許多試驗項目。比如2003年11月因施布魯克大學的魯道爾夫·格里姆、科羅拉多大學鮑爾德分校的德波拉•金和凱特勒製造了第一個分子構成的玻色-愛因斯坦凝聚。
與一般人們遇到的其它相態相比玻色-愛因斯坦凝聚非常不穩定。與外界世界的極其微小的相互作用足以使它們加熱到超出臨界溫度,分解為單一原子的狀態。因此在近時內不太可能為它們找到什麼實際應用。

3 玻色-愛因斯坦凝聚態 - 降低光速

雖然玻色-愛因斯坦凝聚很難理解也很難製作,但它們也有許多非常有趣的特性。比如它們可以有異常高的光學密度差。一般來說凝聚的折射係數是非常小的因為它的密度比平常的固體要小得多。但使用激光可以改變玻色-愛因斯坦凝聚的原子狀態,使它對一定的頻率的係數驟增。這樣光速在凝聚內的速度就會驟降,甚至降到數米每秒。
自轉的玻色-愛因斯坦凝聚可以作為黑洞的模型,入射的光不會逃離。凝聚也可以用來「凍結」光,這樣被「凍結」的光在凝聚分解時又會被釋放出來。

4 玻色-愛因斯坦凝聚態 - 簡介

這個新的第五態的發現還得從1924年說起,那一年,年輕的印度物理學家玻色寄給愛因斯坦一篇論文,提出了一
玻色-愛因斯坦凝聚態
種關於原子的新的理論,在傳統理論中,人們假定一個體系中所有的原子(或分子)都是可以辨別的,我們可以給一個原子取名張三,另一個取名李四……,並且不會將張三認成李四,也不會將李四認成張三。然而玻色卻挑戰了上面的假定,認為在原子尺度上我們根本不可能區分兩個同類原子(如兩個氧原子)有什麼不同。
玻色的論文引起了愛因斯坦的高度重視,他將玻色的理論用於原子氣體中,進而推測,在正常溫度下,原子可以處於任何一個能級(能級是指原子的能量像台階一樣從低到高排列),但在非常低的溫度下,大部分原子會突然跌落到最低的能級上,就好像一座突然坍塌的大樓一樣。處於這種狀態的大量原子的行為像一個大超級原子。打個比方,練兵場上散亂的士兵突然接到指揮官的命令「向前齊步走」,於是他們迅速集合起來,像一個士兵一樣整齊地向前走去。後來物理界將物質的這一狀態稱為玻色-愛因斯坦凝聚態(BEC),它表示原來不同狀態的原子突然「凝聚」到同一狀態。這就是嶄新的玻愛凝聚態。
然而,實現玻愛凝聚態的條件極為苛刻和矛盾:一方面需要達到極低的溫度,另一方面還需要原子體系處於氣態。極低溫下的物質如何能保持氣態呢?這實在令無數科學家頭疼不已。
後來物理學家使用稀薄的金屬原子氣體,金屬原子氣體有一個很好的特性:不會因製冷出現液態,更不會高度聚集形成常規的固體。實驗對象找到了,下一步就是創造出可以冷卻到足夠低溫度的條件。由於激光冷卻技術的發展,人們可以製造出與絕對零度僅僅相差十億分之一度的低溫。並且利用電磁操縱的磁阱技術可以對任意金屬物體實行無觸移動。這樣的實驗系統經過不斷改進,終於在玻色—愛因斯坦凝聚理論提出71年之後的1995年6月,兩名美國科學家康奈爾、維曼以及德國科學家克特勒分別在銣原子蒸氣中第一次直接觀測到了玻愛凝聚態。這三位科學家也因此而榮膺2001年度諾貝爾物理學獎。此後,這個領域經歷著爆發性的發展,目前世界上己有近30個研究組在稀薄原子氣中實現了玻愛凝聚態。

5 玻色-愛因斯坦凝聚態 - 奇特的性質

玻愛凝聚態有很多奇特的性質,請看以下幾個方面:
玻色-愛因斯坦凝聚態
這些原子組成的集體步調非常一致,因此內部沒有任何阻力。激光就是光子的玻愛凝聚,在一束細小的激光里擁擠著非常多的顏色和方向一致的光子流。超導和超流也都是玻愛凝聚的結果。
玻愛凝聚態的凝聚效應可以形成一束沿一定方向傳播的宏觀電子對波,這種波帶電,傳播中形成一束宏觀電流而無需電壓。
原子凝聚體中的原子幾乎不動,可以用來設計精確度更高的原子鐘,以應用於太空航行和精確定位等。
玻愛凝聚態的原子物質表現出了光子一樣的特性正是利用這種特性,前年哈佛大學的兩個研究小組用玻色-愛因斯坦凝聚體使光的速度降為零,將光儲存了起來。
玻愛凝聚態的研究也可以延伸到其他領域,例如,利用磁場調控原子之間的相互作用,可以在物質第五態中產生類似於超新星爆發的現象,甚至還可以用玻色-愛因斯坦凝聚體來模擬黑洞。
上一篇[HKC G920]    下一篇 [《脈理宗經》]

相關評論

同義詞:暫無同義詞