標籤: 暫無標籤

相對論(英語:Theory of relativity)是關於時空和引力的理論,主要由愛因斯坦(Albert Einstein)創立,依其研究對象的不同分為狹義相對論(特殊相對論)和廣義相對論(一般相對論)。

1 相對論 -簡介

(圖)相對論相對論

相對論和量子力學的提出給物理學帶來了革命性的變化,它們共同奠定了近代物理學的基礎。

相對論的基本假設是相對性原理,即物理定律與參照系的選擇無關。

狹義相對論和廣義相對論的區別是,前者討論的是勻速直線運動的參照系(慣性參照系)之間的物理定律,後者則推廣到具有加速度的參照系中(非慣性系),並在等效原理的假設下,廣泛應用於引力場中。相對論和量子力學是現代物理學的兩大基本支柱。奠定了經典物理學基礎的經典力學,不適用於高速運動的物體和微觀領域。相對論解決了高速運動問題;量子力學解決了微觀亞原子條件下的問題。相對論顛覆了人類對宇宙和自然的「常識性」觀念,提出了「時間和空間的相對性」、「四維時空」、「彎曲空間」等全新的概念。

狹義相對論最著名的推論是質能公式,它可以用來計算核反應過程中所釋放的能量,並導致了原子彈的誕生。而廣義相對論所預言的引力透鏡和黑洞,也相繼被天文觀測所證實。

人們對於物理理論的分類有了一種新的認識——以其理論是否是決定論的來劃分經典與非經典的物理學,即「非經典的=量子的」。在這個意義下,相對論仍然是一種經典的理論。

2 相對論 -提出過程

 1905年剛剛得到博士學位的愛因斯坦發表的一篇題為《論動體的電動力學》的文章引發了二十世紀物理學的另一場革命。文章研究的是物體的運動對光學現象的影響,這是當時經典物理學面對的另一個難題。

十九世紀中葉,麥克斯韋建立了電磁場理論,並預言了以光速C傳播的電磁波的存在。到十九世紀末,實驗完全證實了麥克斯韋理論。

當時流行的看法是整個宇宙空間充滿一種特殊物質叫做「以太」,電磁波是以太振動的傳播。但人們發現,這是一個充滿矛盾的理論。如果認為地球是在一個靜止的以太中運動,那麼根據速度疊加原理,在地球上沿不同方向傳播的光的速度必定不一樣,但是實驗否定了這個結論。如果認為以太被地球帶著走,又明顯與天文學上的一些觀測結果不符。

1887年邁克爾遜和莫雷利用光的干涉現象進行了非常精確的測量,仍沒有發現地球有相對於以太的任何運動。對此,洛侖茲(H.A.Lorentz)提出了一個假設,認為一切在以太中運動的物體都要沿運動方向收縮。由此他證明了,即使地球相對以太有運動,邁克爾遜也不可能發現它。愛因斯坦從完全不同的思路研究了這一問題。他指出,只要摒棄牛頓所確立的絕對空間和絕對時間的概念,一切困難都可以解決,根本不需要什麼以太。

愛因斯坦提出了兩條基本原理作為討論運動物體光學現象的基礎。第一個叫做相對性原理。它是說:如果坐標系K'相對於坐標系K作勻速運動而沒有轉動,則相對於這兩個坐標系所做的任何物理實驗,都不可能區分哪個是坐標系K,哪個是坐標系K′。第二個原理叫光速不變原理,它是說光(在真空中)的速度c是恆定的,它不依賴於發光物體的運動速度。

從表面上看,光速不變似乎與相對性原理衝突。因為按照經典力學速度的合成法則,對於K′和K這兩個做相對勻速運動的坐標系,光速應該不一樣。愛因斯坦認為,要承認這兩個原理沒有抵觸,就必須重新分析時間與空間的物理概念。

經典力學中的速度合成法則實際依賴於如下兩個假設:

1.兩個事件發生的時間間隔與測量時間所用的鐘的運動狀態沒有關係;

2.兩點的空間距離與測量距離所用的尺的運動狀態無關。

愛因斯坦發現,如果承認光速不變原理與相對性原理是相容的,那麼這兩條假設都必須摒棄。這時,對一個鍾是同時發生的事件,對另一個鐘不一定是同時的,同時性有了相對性。在兩個有相對運動的坐標系中,測量兩個特定點之間的距離得到的數值不再相等。距離也有了相對性。

如果設K坐標系中一個事件可以用三個空間坐標x、y、z和一個時間坐標t來確定,而K′坐標系中同一個事件由x′、y′、z′和t′來確定,則愛因斯坦發現,x′、y′、z′和t′可以通過一組方程由x、y、z和t求出來。兩個坐標系的相對運動速度和光速c是方程的唯一參數。這個方程最早是由洛侖茲得到的,所以稱為洛侖茲變換。

利用洛侖茲變換很容易證明,鍾會因為運動而變慢,尺在運動時要比靜止時短,速度的相加滿足一個新的法則。相對性原理也被表達為一個明確的數學條件,即在洛侖茲變換下,帶撇的空時變數x'、y'、z'、t'將代替空時變數x、y、z、t,而任何自然定律的表達式仍取與原來完全相同的形式。人們稱之為普遍的自然定律對於洛侖茲變換是協變的。這一點在我們探索普遍的自然定律方面具有非常重要的作用。

此外,在經典物理學中,時間是絕對的。它一直充當著不同於三個空間坐標的獨立角色。愛因斯坦的相對論把時間與空間聯繫起來了。認為物理的現實世界是各個事件組成的,每個事件由四個數來描述。這四個數就是它的時空坐標t和x、y、z,它們構成一個四維的連續空間,通常稱為閔可夫斯基四維空間。在相對論中,用四維方式來考察物理的現實世界是很自然的。狹義相對論導致的另一個重要的結果是關於質量和能量的關係。在愛因斯坦以前,物理學家一直認為質量和能量是截然不同的,它們是分別守恆的量。愛因斯坦發現,在相對論中質量與能量密不可分,兩個守恆定律結合為一個定律。他給出了一個著名的質量-能量公式:E=mc^2,其中c為光速。於是質量可以看作是它的能量的量度。計算表明,微小的質量蘊涵著巨大的能量。這個奇妙的公式為人類獲取巨大的能量,製造原子彈和氫彈以及利用原子能發電等奠定了理論基礎。

對愛因斯坦引入的這些全新的概念,大部分物理學家,其中包括相對論變換關係的奠基人洛侖茲,都覺得難以接受。舊的思想方法的障礙,使這一新的物理理論直到一代人之後才為廣大物理學家所熟悉,就連瑞典皇家科學院,1922年把諾貝爾獎金授予愛因斯坦時,也只是說「由於他對理論物理學的貢獻,更由於他發現了光電效應的定律。」對於相對論隻字未提。

愛因斯坦於1915年進一步建立起了廣義相對論。狹義相對性原理還僅限於兩個相對做勻速運動的坐標系,而在廣義相對論性原理中勻速運動這個限制被取消了。他引入了一個等效原理,認為我們不可能區分引力效應和非勻速運動,即非勻速運動和引力是等效的。他進而分析了光線在靠近一個行星附近穿過時會受到引力而彎折的現象,認為引力的概念本身完全不必要。可以認為行星的質量使它附近的空間變成彎曲,光線走的是最短程線。基於這些討論,愛因斯坦導出了一組方程,它們可以確定由物質的存在而產生的彎曲空間幾何。利用這個方程,愛因斯坦計算了水星近日點的位移量,與實驗觀測值完全一致,解決了一個長期解釋不了的困難問題,這使愛因斯坦激動不已。他在寫給埃倫菲斯特的信中這樣寫道:「……方程給出了近日點的正確數值,你可以想象我有多高興!有好幾天,我高興得不知怎樣才好。」

1915年11月25日,愛因斯坦把題為「萬有引力方程」的論文提交給了柏林的普魯士科學院,完整地論述了廣義相對論。在這篇文章中他不僅解釋了天文觀測中發現的水星軌道近日點移動之謎,而且還預言:星光經過太陽會發生偏折,偏折角度相當於牛頓理論所預言的數值的兩倍。第一次世界大戰延誤了對這個數值的測定。1919年5月25日的日全食給人們提供了大戰後的第一次觀測機會。英國人愛丁頓奔赴非洲西海岸的普林西比島,進行了這一觀測。11月6日,湯姆遜在英國皇家學會和皇家天文學會聯席會議上鄭重宣布:得到證實的是愛因斯坦而不是牛頓所預言的結果。他稱讚道「這是人類思想史上最偉大的成就之一。愛因斯坦發現的不是一個小島,而是整整一個科學思想的新大陸。」泰晤士報以「科學上的革命」為題對這一重大新聞做了報道。消息傳遍全世界,愛因斯坦成了舉世矚目的名人。廣義相對論也被提高到神話般受人敬仰的寶座。

從那時以來,人們對廣義相對論的實驗檢驗表現出越來越濃厚的興趣。但由於太陽系內部引力場非常弱,引力效應本身就非常小,廣義相對論的理論結果與牛頓引力理論的偏離很小,觀測非常困難。七十年代以來,由於射電天文學的進展,觀測的距離遠遠突破了太陽系,觀測的精度隨之大大提高。特別是1974年9月由麻省理工學院的泰勒和他的學生赫爾斯,用305米口徑的大型射電望遠鏡進行觀測時,發現了脈衝雙星,它是一個中子星和它的伴星在引力作用下相互繞行,周期只有0.323天,它的表面的引力比太陽表面強十萬倍,是地球上甚至太陽系內不可能獲得的檢驗引力理論的實驗室。經過長達十餘年的觀測,他們得到了與廣義相對論的預言符合得非常好的結果。由於這一重大貢獻,泰勒和赫爾斯獲得了1993年諾貝爾物理獎。

3 相對論 -分野

彎曲時空的-宇宙模型圖彎曲時空的-宇宙模型圖

狹義與廣義相對論的分野傳統上,在愛因斯坦剛剛提出相對論的初期,人們以所討論的問題是否涉及非慣性參考系來作為狹義與廣義相對論分類的標誌。隨著相對論理論的發展,這種分類方法越來越顯出其缺點——參考系是跟觀察者有關的,以這樣一個相對的物理對象來劃分物理理論,被認為較不能反映問題的本質。目前一般認為,狹義與廣義相對論的區別在於所討論的問題是否涉及引力(彎曲時空),即狹義相對論只涉及那些沒有引力作用或者引力作用可以忽略的問題,而廣義相對論則是討論有引力作用時的物理學的。用相對論的語言來說,就是狹義相對論的背景時空是平直的,即四維平凡流型配以閔氏度規,其曲率張量為零,又稱閔氏時空;而廣義相對論的背景時空則是彎曲的,其曲率張量不為零。

4 相對論 -佯謬問題

相對論誕生后,曾經有一個令人極感興趣的疑難問題---雙生子佯謬。一對雙生子A和B,A在地球上,B乘火箭去做星際旅行,經過漫長歲月返回地球。愛因斯坦由相對論斷言,二人經歷的時間不同,重逢時B將比A年輕。許多人有疑問,認為A看B在運動,B看A也在運動,為什麼不能是A比B年輕呢?由於地球可近似為慣性系,B要經歷加速與減速過程,是變加速運動參考系,真正討論起來非常複雜,因此這個愛因斯坦早已討論清楚的問題被許多人誤認為相對論是自相矛盾的理論。如果用時空圖和世界線的概念討論此問題就簡便多了,只是要用到許多數學知識和公式。在此只是用語言來描述一種最簡單的情形。不過只用語言無法更詳細說明細節,有興趣的請參考一些相對論書籍。我們的結論是,無論在那個參考系中,B都比A年輕。 

為使問題簡化,只討論這種情形,火箭經過極短時間加速到亞光速,飛行一段時間后,用極短時間掉頭,又飛行一段時間,用極短時間減速與地球相遇。這樣處理的目的是略去加速和減速造成的影響。在地球參考系中很好討論,火箭始終是動鍾,重逢時B比A年輕。在火箭參考系內,地球在勻速過程中是動鍾,時間進程比火箭內慢,但最關鍵的地方是火箭掉頭的過程。在掉頭過程中,地球由火箭後方很遠的地方經過極短的時間劃過半個圓周,到達火箭的前方很遠的地方。這是一個"超光速"過程。只是這種超光速與相對論並不矛盾,這種"超光速"並不能傳遞任何信息,不是真正意義上的超光速。如果沒有這個掉頭過程,火箭與地球就不能相遇,由於不同的參考系沒有統一的時間,因此無法比較他們的年齡,只有在他們相遇時才可以比較。火箭掉頭后,B不能直接接受A的信息,因為信息傳遞需要時間。B看到的實際過程是在掉頭過程中,地球的時間進度猛地加快了。在B看來,A先是比B年輕,接著在掉頭時迅速衰老,返航時,A又比自己衰老的慢了。重逢時,自己仍比A年輕。也就是說,相對論不存在邏輯上的矛盾。

5 相對論 -狹義相對論

概念

 馬赫和休謨的哲學對愛因斯坦影響很大。馬赫認為時間和空間的量度與物質運動有關。時空的觀念是通過經驗形成的。絕對時空無論依據什麼經驗也不能把握。休謨更具體的說:空間和廣延不是別的,而是按一定次序分佈的可見的對象充滿空間。而時間總是以能夠變化的對象的可覺察的變化而發現的。1905年愛因斯坦指出,邁克爾遜和莫雷實驗實際上說明關於「以太」的整個概念是多餘的,光速是不變的。而牛頓的絕對時空觀念是錯誤的。不存在絕對靜止的參照物,時間測量也是隨參照系不同而不同的。他用光速不變和相對性原理提出了洛侖茲變換。創立了狹義相對論。

相對論相對論

狹義相對論是建立在四維時空觀上的一個理論,因此要弄清相對論的內容,要先對相對論的時空觀有個大體了解。在數學上有各種多維空間,但目前為止,我們認識的物理世界只是四維,即三維空間加一維時間。現代微觀物理學提到的高維空間是另一層意思,只有數學意義,在此不做討論。

四維時空是構成真實世界的最低維度,我們的世界恰好是四維,至於高維真實空間,至少現在我們還無法感知。(我在一個帖子上說過一個例子,)一把尺子在三維空間里(不含時間)轉動,其長度不變,但旋轉它時,它的各坐標值均發生了變化,且坐標之間是有聯繫的。四維時空的意義就是時間是第四維坐標,它與空間坐標是有聯繫的,也就是說時空是統一的,不可分割的整體,它們是一種「此消彼長」的關係。 

四維時空不僅限於此,由質能關係知,質量和能量實際是一回事,質量(或能量)並不是獨立的,而是與運動狀態相關的,比如速度越大,質量越大。在四維時空里,質量(或能量)實際是四維動量的第四維分量,動量是描述物質運動的量,因此質量與運動狀態有關就是理所當然的了。在四維時空里,動量和能量實現了統一,稱為能量動量四矢。另外在四維時空里還定義了四維速度,四維加速度,四維力,電磁場方程組的四維形式等。值得一提的是,電磁場方程組的四維形式更加完美,完全統一了電和磁,電場和磁場用一個統一的電磁場張量來描述。四維時空的物理定律比三維定律要完美的多,這說明我們的世界的確是四維的。可以說至少它比牛頓力學要完美的多。至少由它的完美性,我們不能對它妄加懷疑。

相對論中,時間與空間構成了一個不可分割的整體——四維時空,能量與動量也構成了一個不可分割的整體——四維動量。這說明自然界一些看似毫不相干的量之間可能存在深刻的聯繫。在今後論及廣義相對論時我們還會看到,時空與能量動量四矢之間也存在著深刻的聯繫。

公式

相對論公式及證明

單位 符號 單位 符號
坐標: m (x,y,z) 力: N F(f)
時間: s t(T) 質量:kg m(M)
位移: m r 動量:kg*m/s p(P)
速度: m/s v(u) 能量: J E
加速度: m/s^2 a 衝量:N*s I
長度: m l(L) 動能:J Ek
路程: m s(S) 勢能:J Ep
角速度: rad/s ω 力矩:N*m M
角加速度:rad/s^2α 功率:W P

力學

一、牛頓力學

(一):質點運動學基本公式:(1)v=dr/dt,r=r0 ∫RDT (2)a=dv/dt,v=v0 ∫adt (註:兩式中左式為微分形式,右式為積分形式) 當v不變時,(1)表示勻速直線運動。 當a不變時,(2)表示勻變速直線運動。只要知道質點的運動方程r=r(t),它的一切運動規律就可知了。

(二):質點動力學:

(1)牛一:不受力的物體做勻速直線運動。

(2)牛二:物體加速度與合外力成正比與質量成反比。

F=ma=mdv/dt=dp/dt

(3)牛三:作用力與反作與力等大反向作用在同一直線上。

(4)萬有引力:兩質點間作用力與質量乘積成正比,與距離平方成反比。

F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)

動量定理:I=∫Fdt=p2-p1(合外力的衝量等於動量的變化)

動量守恆:合外力為零時,系統動量保持不變。

動能定理:W=∫Fds=Ek2-Ek1(合外力的功等於動能的變化)

機械能守恆:只有重力做功時,Ek1 Ep1=Ek2 Ep2 (註:牛頓力學的核心是牛二:F=ma,它是運動學與動力學的橋樑,我們的目的是知道物體的運動規律,即求解運動方程r=r(t),若知受力情況,根據牛二可得a,再根據運動學基本公式求之。同樣,若知運動方程r=r(t),可根據運動學基本公式求a,再由牛二可知物體的受力情況。)

二、狹義相對論力學

(註:γ=1/sqr(1-u^2/c^2),β=u/c,u為慣性系速度。)

1.基本原理:

(1)相對性原理:所有慣性系都是等價的。

(2)光速不變原理:真空中的光速是與慣性系無關的常數。(此處先給出公式再給出證明)

2.洛侖茲坐標變換:   

X=γ(x-ut)   Y=y   Z=z   T=γ(t-ux/c^2)

3.速度變換:

V(x)=(v(x)-u)/(1-v(x)u/c^2)

V(y)=v(y)/(γ(1-v(x)u/c^2))

V(z)=v(z)/(γ(1-v(x)u/c^2))

4.尺縮效應:△L=△l/γ或dL=dl/γ

5.鐘慢效應:△t=γ△τ或dt=dτ/γ

6.光的多普勒效應:ν(a)=sqr((1-β)/(1 β))ν(b) (光源與探測器在一條直線上運動。)

7.動量表達式:P=Mv=γmv,即M=γm

8.相對論力學基本方程:F=dP/dt

9.質能方程:E=Mc^2

10.能量動量關係:E^2=(E0)^2 P^2c^2(註:在此用兩種方法證明,一種在三維空間內進行,一種在四維時空中證明,實際上他們是等價的。)

原理

狹義相對論建立在如下的兩個基本公設上:

狹義相對性原理(狹義協變性原理):一切的慣性參考系都是平權的,即物理規律的形式在任何的慣性參考系中是相同的。這意味著物理規律對於一位靜止在實驗室里的觀察者和一個相對於實驗室高速勻速運動著的電子是相同的。
光速不變原理:真空中的光速在任何參考系下是恆定不變的,這用幾何語言可以表為光子在時空中的世界線總是類光的。也正是由於光子有這樣的實驗性質,在國際單位制中使用了「光在真空中1/299,792,458秒內所走過的距離」來定義長度單位「米」(米)。

效應

根據狹義相對性原理,慣性系是完全等價的,因此,在同一個慣性系中,存在統一的時間,稱為同時性,而相對論證明,在不同的慣性系中,卻沒有統一的同時性,也就是兩個事件(時空點)在一個慣性系內同時,在另一個慣性系內就可能不同時,這就是同時的相對性,在慣性系中,同一物理過程的時間進程是完全相同的,如果用同一物理過程來度量時間,就可在整個慣性系中得到統一的時間。在今後的廣義相對論中可以知道,非慣性系中,時空是不均勻的,也就是說,在同一非慣性系中,沒有統一的時間,因此不能建立統一的同時性。

相對論導出了不同慣性系之間時間進度的關係,發現運動的慣性系時間進度慢,這就是所謂的鐘慢效應。可以通俗的理解為,運動的鐘比靜止的鐘走得慢,而且,運動速度越快,鍾走的越慢,接近光速時,鍾就幾乎停止了。

尺子的長度就是在一慣性系中"同時"得到的兩個端點的坐標值的差。由於"同時"的相對性,不同慣性系中測量的長度也不同。相對論證明,在尺子長度方向上運動的尺子比靜止的尺子短,這就是所謂的尺縮效應,當速度接近光速時,尺子縮成一個點。

由以上陳述可知,鐘慢和尺縮的原理就是時間進度有相對性。也就是說,時間進度與參考系有關。這就從根本上否定了牛頓的絕對時空觀,相對論認為,絕對時間是不存在的,然而時間仍是個客觀量。比如在下期將討論的雙生子理想實驗中,哥哥乘飛船回來后是15歲,弟弟可能已經是45歲了,說明時間是相對的,但哥哥的確是活了15年,弟弟也的確認為自己活了45年,這是與參考系無關的,時間又是"絕對的"。這說明,不論物體運動狀態如何,它本身所經歷的時間是一個客觀量,是絕對的,這稱為固有時。也就是說,無論你以什麼形式運動,你都認為你喝咖啡的速度很正常,你的生活規律都沒有被打亂,但別人可能看到你喝咖啡用了100年,而從放下杯子到壽終正寢只用了一秒鐘。      

6 相對論 -廣義相對論

概念

在本質上,所有的物理學問題都涉及採用什麼時空觀的問題。在二十世紀以前的經典物理學里,人們採用的是牛頓的絕對時空觀。而相對論的提出改變了這種時空觀,這就導致人們必須依相對論的要求對經典物理學的公式進行改寫,以使其具有相對論所要求的洛倫茲協變性而不是以往的伽利略協變性。在經典理論物理的三大領域中,電動力學本身就是洛倫茲協變的,無需改寫;統計力學有一定的特殊性,但這一特殊性並不帶來很多急需解決的原則上的困難;而經典力學的大部分都可以成功的改寫為相對論形式,以使其可以用來更好的描述高速運動下的物體,但是唯獨牛頓的引力理論無法在狹義相對論的框架體系下改寫,這直接導致愛因斯坦擴展其狹義相對論,而得到了廣義相對論。

愛因斯坦在1915年左右發表的一系列論文中給出了廣義相對論最初的形式。他首先注意到了被稱之為(弱)等效原理的實驗事實:引力質量與慣性質量是相等的(目前實驗證實,在10 − 12的精確度範圍內,仍沒有看到引力質量與慣性質量的差別)。這一事實也可以理解為,當除了引力之外不受其他力時,所有質量足夠小(即其本身的質量對引力場的影響可以忽略)的測驗物體在同一引力場中以同樣的方式運動。既然如此,則不妨認為引力其實並不是一種「力」,而是一種時空效應,即物體的質量(準確的說應當為非零的能動張量)能夠產生時空的彎曲,引力源對於測驗物體的引力正是這種時空彎曲所造成的一種幾何效應。這時,所有的測驗物體就在這個彎曲的時空中做慣性運動,其運動軌跡正是該彎曲時空的測地線,它們都遵守測地線方程。正是在這樣的思路下,愛因斯坦得到了其廣義相對論。    

方程

愛因斯坦場方程:它具體表達了時空中的物質(能動張量)對於時空幾何(曲率張量的函數)的影響,其中對應能動張量的要求(其梯度為零)則包含了上面關於在其中做慣性運動的物體的運動方程的內容。

根據廣義相對論中「宇宙中一切物質的運動都可以用曲率來描述,引力場實際上就是一個彎曲的時空」的思想,愛因斯坦給出了著名的引力場方程(Einstein's field equation): R_ - \fracg_ R = - 8 \pi {G \over c^2} T_
 其中 G 為牛頓萬有引力常數,這被稱為愛因斯坦引力場方程,也叫愛因斯坦場方程。 該方程是一個以時空為自變數、以度規為因變數的帶有橢圓型約束的二階雙曲型偏微分方程。它以複雜而美妙著稱,但並不完美,計算時只能得到近似解。最終人們得到了真正球面對稱的準確解——史瓦茲解。 加入宇宙學常數后的場方程為: R_ - \fracg_ R \Lambda g_= - 8 \pi {G \over c^2} T_

原理

廣義相對性原理(廣義協變性原理):任何物理規律都應該用與參考系無關的物理量表示出來。用幾何語言描述即為,任何在物理規律中出現的時空量都應當為該時空的度規或者由其導出的物理量。  

廣義論驗證

 愛因斯坦在建立廣義相對論時,就提出了三個實驗,並很快就得到了驗證:(1)引力紅移(2)光線偏折(3)水星近日點進動。直到最近才增加了第四個驗證:(4)雷達回波的時間延遲。 

 (1)引力紅移:廣義相對論證明,引力勢低的地方固有時間的流逝速度慢。也就是說離天體越近,時間越慢。這樣,天體表面原子發出的光周期變長,由於光速不變,相應的頻率變小,在光譜中向紅光方向移動,稱為引力紅移。宇宙中有很多緻密的天體,可以測量它們發出的光的頻率,並與地球的相應原子發出的光作比較,發現紅移量與相對論預言一致。60年代初,人們在地球引力場中利用伽瑪射線的無反衝共振吸收效應(穆斯堡爾效應)測量了光垂直傳播22。5M產生的紅移,結果與相對論預言一致。 

 (2)光線偏折:如果按光的波動說,光在引力場中不應該有任何偏折,按半經典式的"量子論加牛頓引力論"的混合產物,用普朗克公式E=hr和質能公式E=MC^2求出光子的質量,再用牛頓萬有引力定律得到的太陽附近的光的偏折角是0.87秒,按廣義相對論計算的偏折角是1.75秒,為上述角度的兩倍。1919年,一戰剛結束,英國科學家愛丁頓派出兩支考察隊,利用日食的機會觀測,觀測的結果約為1.7秒,剛好在相對論實驗誤差範圍之內。引起誤差的主要原因是太陽大氣對光線的偏折。最近依靠射電望遠鏡可以觀測類星體的電波在太陽引力場中的偏折,不必等待日食這種稀有機會。精密測量進一步證實了相對論的結論。 

 (3)水星近日點的進動:天文觀測記錄了水星近日點每百年移動5600秒,人們考慮了各種因素,根據牛頓理論只能解釋其中的5557秒,只剩43秒無法解釋。廣義相對論的計算結果與萬有引力定律(平方反比定律)有所偏差,這一偏差剛好使水星的近日點每百年移動43秒。 

 (4)雷達回波實驗:從地球向行星發射雷達信號,接收行星反射的信號,測量信號往返的時間,來檢驗空間是否彎曲(檢驗三角形內角和)60年代,美國物理學家克服重重困難做成了此實驗,結果與相對論預言相符。 

 僅僅依靠這些實驗不足以說明相對論的正確性,只能說明它是比牛頓引力理論更精確的理論,因為它既包含牛頓引力論,又可以解釋牛頓理論無法解釋的現象。但不能保證這就是最好的理論,因此,廣義相對論仍面臨考驗。

7 相對論 -蟻蜂說法

螞蟻與蜜蜂幾何學

設想有一種生活在二維面上的扁平螞蟻,因為是二維生物,所以沒有第三維感覺。如果螞蟻生活在大平面上,就從實踐中創立歐氏幾何。如果它生活在一個球面上,就會創立一種三角和大於180度,圓周率小於3.14的球面幾何學。但是,如果螞蟻生活在一個很大的球面上,當它的「科學」還不夠發達,活動範圍還不夠大,它不足以發現球面的彎曲,它生活的小塊球面近似於平面,因此它將先創立歐氏幾何學。當它的「科學技術」發展起來時,它會發現三角和大於180度,圓周率小於∏等「實驗事實」。如果螞蟻夠聰明,它會得到結論,它們的宇宙是一個彎曲的二維空間,當它把自己的「宇宙」測量遍了時,會得出結論,它們的宇宙是封閉的(繞一圈還會回到原地),有限的,而且由於「空間」(曲面)的彎曲程度(曲率)處處相同,它們會將宇宙與自己的宇宙中的圓類比起來,認為宇宙是「圓形的」。由於沒有第三維感覺,所以它無法想象,它們的宇宙是怎樣彎曲成一個球的,更無法想象它們這個「無邊無際」的宇宙是存在於一個三維平直空間中的有限面積的球面。它們很難回答「宇宙外面是什麼」這類問題。因為,它們的宇宙是有限無邊的封閉的二維空間,很難形成「外面」這一概念。

對於螞蟻必須藉助「發達的科技」才能發現的抽象的事實,一隻蜜蜂卻可以很容易憑直觀形象的描述出來。因為蜜蜂是三維空間的生物,對於嵌在三維空間的二維曲面是「一目了然」的,也很容易形成球面的概念。螞蟻憑藉自己的「科學技術」得到了同樣的結論,卻很不形象,是嚴格數學化的。

由此可見,並不是只有高維空間的生物才能發現低維空間的情況,聰明的螞蟻一樣可以發現球面的彎曲,並最終建立起完善的球面幾何學,其認識深度並不比蜜蜂差多少。 
 黎曼幾何是一個龐大的幾何公理體系,專門用於研究彎曲空間的各種性質。球面幾何只是它極小的一個分支。它不僅可用於研究球面,橢圓面,雙曲面等二維曲面,還可用於高維彎曲空間的研究。它是廣義相對論最重要的數學工具。黎曼在建立黎曼幾何時曾預言,真實的宇宙可能是彎曲的,物質的存在就是空間彎曲的原因。這實際上就是廣義相對論的核心內容。只是當時黎曼沒有像愛因斯坦那樣豐富的物理學知識,因此無法建立廣義相對論。

8 相對論 -批評聲音   

倒相對論

相對論的提出,同樣受到很多的指責,有很多人認為它是錯誤的,並大大阻礙了社會的發展。然而這種觀點並不被主流科學界所接受。觀點如下:

1、推翻光的波粒二象性,即證明光只是波,或光只是粒子

2、推翻光速不變定律,即證明存在以太或存在絕對坐標

3、證明牛頓理論的正確性  

4,愛因斯坦在創建相對論時就搞錯了研究對象。愛因斯坦的相對論充其量也只能算是:把光線作為物體運動信號傳遞媒介時的信號傳遞規律,不是物體運動的普遍規律。
   用通俗一些的話來說。就好像有一輛坦克向我們駛來,在運動中發射子彈,愛因斯坦在研究這個現象時,就只研究這輛坦克發射的第一個子彈的運行狀況,不僅不研究坦克的運動,也不研究後來發射的子彈的運動。    這樣研究的結果當然可以得出一些結論,可是不一定是我們需要的結論,在上例中,對我們威脅最大的不是那顆子彈,而是坦克。

愛因斯坦相對論有幾個主要問題:

1、愛因斯坦對時間的定義是:運動參照系內的鐘,依賴光,通過真空傳遞到觀測系的示數,代表運動系的時間(參見《論動體的電動力學》)。這個定義導致各參照系的時間在不同的觀測者看來,可以是不同的,這違背了科學所必須具備的客觀公認規律的要求。(參見:科學、時間、客觀等定義)

 2、愛因斯坦沒有找到光介質,因此他不會用波學原理解決光問題,而是拿粒子與光的不同來總結光的規律(參見《論動體的電動力學》,他對光速不變原理的論述就有兩個,那個他所論述的「靜止系」都不知道怎麼定義)。空氣、水、玻璃、油,這些都是光介質,介質決定光速,與光源運動無關,這才是波特性,愛因斯坦遇到的問題,我們用聲波基本都可以解釋(例如測量鐘慢現象、尺縮現象、同時性的相對性、波速不變)。 (參見:介質、波等定義)

 3、愛因斯坦不知道真空有相對性,不知道太空不是純粹真空,如果假定太空中的稀薄氣體,就是光介質,則光完全是普通的波,沒有任何特殊性,真空中光不能傳播。(參見:真空的定義)

9 相對論 -應用

相對論主要在兩個方面有用:一是高速運動(與光速可比擬的高速),一是強引力場。

在醫院的放射治療部,多數設有一台粒子加速器,產生高能粒子來製造同位素,作治療之用。由於粒子運動的速度相當接近光速(0.9c-0.9999c),故粒子加速器的設計和使用必須考慮相對論效應。
全球衛星定位系統的衛星上的原子鐘,對精確定位非常重要。這些時鐘同時受狹義相對論因高速運動而導致的時間變慢(-7.2 μs/日),和廣義相對論因較(地面物件)承受著較弱的重力場而導致時間變快效應(+45.9 μs/日)影響。相對論的凈效應是那些時鐘較地面的時鐘運行的為快。故此,這些衛星的軟體需要計算和抵消一切的相對論效應,確保定位準確。
全球衛星定位系統的演算法本身便是基於光速不變原理的,若光速不變原理不成立,則 全球衛星定位系統則需要更換為不同的演算法方能精確定位。
過渡金屬如鉑的內層電子,運行速度極快,相對論效應不可忽略。在設計或研究新型的催化劑時,便需要考慮相對論對電子軌態能級的影響。同理,相對論亦可解釋為何鉛的6s2軌態的能級偏低現象(inert pair effect)。這個效應可以解釋為何某些化學電池有著較高的能量密度,為設計更輕巧的電池提供理論根據[4]。相對論也可以解釋為何水銀是液體,而其他金屬卻不是。
相對論指出,光速是信息傳遞速度的極限。超級電腦的匯流排時脈一般不能超越30GHz,否則在脈衝到達超級電腦的另一處之前,另一脈衝就已經發出了。結果電腦內不同地方的元件會不協調。相對論為超級電腦的布線長度和時脈上限提供了理論基礎。
由廣義相對論推導出來的重力透鏡效應,讓天文學家可以觀察到黑洞和不發射電磁波的暗物質,和評估質量在太空的分佈狀況。
值得一提的是,原子彈的出現並非由於著名的質能關係式(E=mc2)。質能關係式只是解釋原子彈威力的數學工具而已。

10 相對論 -精神領域裡的相對論《精神相對論》

精神相對論是智力相對論、情緒相對論和意志相對論的統稱,是反省心理學關於無意識(潛意識)的重要理論之一(其它兩個是心潮理論和淺層理論)是反省心理學所獨創的一個理論。
愛因斯坦的相對論是反映外宇宙的物質世界運動規律的理論,精神相對論是反映內宇宙的心理世界活動規律的理論。
所謂「精神相對論」是指:一個人對外界的精神反應(包括智力反應、情緒反應、意志反應)取決於其「無意識淺層」結構,在符合其淺層「主導塊」(包括主導信息塊、主導情緒塊和主導意志塊)方面的反應必強;反之,在不符合其淺層「主導塊」方面的反應必弱;且主導塊在淺層所佔的空間、比重越大,則相符合方面的反應就越強烈、越廣泛,同時,不相符合方面的反應就越弱、越淡漠、越狹窄。
「主導塊」是指淺層中最大的信息塊、情緒塊或意志(慾望)塊,分別是主導信息塊、主導情緒塊和主導意志塊。
其中「智力反應」包括感知、觀察、專註、自製、記憶、理解、創造、表達、感覺、知覺、表象、概念、判斷、推理等,「情緒反應」包括愉快、高興、恐懼、焦慮、抑鬱、悲哀、緊張等,意志反應包括意志的頑強和薄弱等。
精神相對論包括智力相對論、情緒相對論和意志相對論三種,分別適用於人對外界的智力反應、情緒反應和意志反應。
情緒相對論是指:一個人對外界的情緒反應,取決於其淺層「情緒結構」之狀況,在符合其淺層「主導情緒塊」方面的反應必強;反之,在不符合淺層主導情緒塊方面的反應必弱;且主導情緒塊在淺層所佔空間越大,相符合方面的反應就越強烈、越廣泛,不相符合方面的反應就越淡漠、越狹窄。
意志相對論是指:一個人對外界的意志反應,取決於其淺層「意志結構」之狀況,在符合其淺層「主導意志塊」方面的反應必強;反之,在不符合淺層主導意志塊方面的反應必弱;且主導意志塊在淺層所佔空間越大,相符合方面的反應就越頑強,不相符合方面的反應就越薄弱。
智力相對論是指:一個人對外界的智力反應(即某方面特殊智力的高低),取決於其淺層「信息結構」之狀況,在符合其淺層「主導信息塊」方面的反應必強(感知力、觀察力、專註力、自制力、記憶力、理解力、創造力、表達力、實踐力等各項智力都較高);反之,在不符合淺層主導信息塊方面的反應必弱(感知力、觀察力、專註力、自製等各項智力都較低);且該主導信息塊在淺層所佔空間比重越大,相符合方面的智力反應就越強烈(感知力、觀察力、專註力等各項智力都越高),不相符合方面的智力反應就越弱(感知力、觀察力、專註力等各項智力都越低)。

上一篇[安理申]    下一篇 [分形同氣]

相關評論

同義詞:暫無同義詞