評論(0

米歇爾·弗里德曼

標籤: 暫無標籤

米歇爾·弗里德曼,於1951年生於美國,1986年獲的菲爾茲獎,證明了四維流形拓撲的龐加萊猜想,對偏微分方程、相對論也有建樹。


1 米歇爾·弗里德曼 -基本資料

米歇爾·弗里德曼,生於美國,1986年獲得菲爾茲獎,證明了四維流形拓撲的龐加萊猜想,對偏微分方程、相對論也有建樹。


2 米歇爾·弗里德曼 -個人經歷

米歇爾·弗里德曼1951年4月21日生於洛杉磯,1968年在伯克利分校讀一年之後,去普林頓大學讀博士,1973年獲博士學位,其後在伯克利任講師。1976年到加利福尼亞大學聖迭戈分校任助理教授、副教授,1982年起任教授。1984年當選為美國科學院院士,1987年榮獲美國國家科學獎章。


3 米歇爾·弗里德曼 -取得成就

米歇爾·弗里德曼的主要貢獻是打破四維流形的禁區,在1981年率先證明了四維流形龐加萊猜想,而且四維單連通流形的拓撲分類,他的主要結果是任何整係數公模二次型都是某四維流形的交截形式。他的工作直接影響唐納森進一步的結構。到1990年代,他的方向轉嚮應用拓撲學與物理學,特別是等離子體物理和磁流體力學。


4 米歇爾·弗里德曼 -龐加萊猜想

一位數學史家曾經如此形容1854年出生的亨利·龐加萊(Henri Poincare):「有些人彷彿生下來就是為了證明天才的存在似的,每次看到亨利,我就會聽見這個惱人的聲音在我耳邊響起。」龐加萊作為數學家的偉大,並不完全在於他解決了多少問題,而在於他曾經提出過許多具有開創意義、奠基性的大問題。龐加萊猜想,就是其中的一個。

1904年,龐加萊在一篇論文中提出了一個看似很簡單的拓撲學的猜想:在一個三維空間中,假如每一條封閉的曲線都能收縮到一點,那麼這個空間一定是一個三維的圓球。但1905年發現提法中有錯誤,並對之進行了修改,被推廣為:「任何與n維球面同倫的n維封閉流形必定同胚於n維球面。」後來,這個猜想被推廣至三維以上空間,被稱為「高維龐加萊猜想」。

提出這個猜想后,龐加萊一度認為自己已經證明了它。但沒過多久,證明中的錯誤就被暴露了出來。於是,拓撲學家們開始了證明它的努力。

1983年,美國數學家弗里德曼(Freedman)將龐加萊猜想的證明又向前推動了一步。在唐納森工作的基礎上,他證出了四維空間中的龐加萊猜想,並因此獲得菲爾茨獎。

 

上一篇[可望而不可即]    下一篇 [伍貽兆]

相關評論

同義詞:暫無同義詞