標籤:分析學能級

在形成分子時,原子軌道構成具有分立能級的分子軌道。晶體是由大量的原子有序堆積而成的。由原子軌道所構成的分子軌道的數量非常之大,以至於可以將所形成的分子軌道的能級看成是准連續的,即形成了能帶。

1基本介紹

能帶理論是用量子力學的方法研究固體內部電子運動的理論。始於20世紀初期,在量子力學確立以後發展起來的一種近似理論。它曾經定性地闡明了晶體中電子運動的普遍特點,並進而說明了導體與絕緣體、半導體的區
能帶

  能帶

別所在,解釋了晶體中電子的平均自由程問題。
自20世紀六十年代,電子計算機得到廣泛應用以後,使用電子計算機依據第一原理做複雜能帶結構計算成為可能(不過仍然非常耗時,一次典型的能帶結構自洽計算在普通工作站上往往需要花幾個小時甚至一周多的時間才能完成)。能帶理論由定性發展為一門定量的精確科學。
晶體中電子所能具有的能量範圍,在物理學中往往形象化地用一條條水平橫線表示電子的各個能量值。能量愈大,線的位置愈高,一定能量範圍內的許多能級(彼此相隔很近)形成一條帶,稱為能帶。各種晶體能帶數目及其寬度等都不相同。相鄰兩能帶間的能量範圍稱為「能隙」或「禁帶」。晶體中電子不能具有這種能量。完全被電子佔據的能帶稱「滿帶」。滿帶中的電子不會導電;完全未被佔據的稱「空帶」;部分被佔據的稱「導帶」。導帶中的電子能夠導電;價電子所佔據能帶稱「價帶」。能量比價帶低的各能帶一般都是滿帶,價帶可以是滿帶,也可以是導帶;如在金屬中是導帶,所以金屬能導電。在絕緣體中和半導
固體能帶

  固體能帶

體中是滿帶所以它們不能導電。但半導體很容易因其中有雜質或受外界影響(如光照,升溫等),使價帶中的電子數目減少,或使空帶中出現一些電子而成為導帶,因而也能導電。

2結構簡介

固體材料的能帶結構由多條能帶組成,能帶分為傳導帶(簡稱導帶)、價電帶(簡稱價帶)和禁帶等,導帶和價帶間的空隙稱為能隙
能帶

  能帶

能帶結構可以解釋固體中導體、半導體、絕緣體三大類區別的由來。材料的導電性是由「傳導帶」中含有的電子數量決定。當電子從「價帶」獲得能量而跳躍至「傳導帶」時,電子就可以在帶間任意移動而導電。
一般常見的金屬材料,因為其傳導帶與價帶之間的「能隙」非常小,在室溫下 電子很容易獲得能量而跳躍至傳導帶而導電,而絕緣材料則因為能隙很大(通常大於9電子伏特),電子很難跳躍至傳導帶,所以無法導電。一般半導體材料的能隙約為1至3電子伏特,介於導體和絕緣體之間。因此只要給予
能帶

  能帶

適當條件的能量激發,或是改變其能隙之間距,此材料就能導電。

3能帶理論

理論意義
能帶理論是現代固體電子技術的理論基礎,對於微電子技術的發展起了無可估量的作用。
能帶理論研究固體中電子運動規律的一種近似理論。固體由原子組成,原子又包括原子實和最外層電子,它們均處於不斷的運動狀態。為使問題簡化,首先假定固體中的原子實固定不動,並按一定規律作周期性排列,然後進一步認為每個電子都是在固定的原子實
能帶

  能帶

周期勢場及其他電子的平均勢場中運動,這就把整個問題簡化成單電子問題。能帶理論就屬這種單電子近似理論,它首先由F.布洛赫和L.-N.布里淵在解決金屬的導電性問題時提出。具體的計算方法有自由電子近似法、緊束縛近似法、正交化平面波法和原胞法等。前兩種方法以量子力學的微擾理論作為基礎,只分別適用於原子實對電子的束縛很弱和很強的兩種極端情形;后兩種方法則適用於較一般的情形,應用較廣。
上一篇[准金屬]    下一篇 [滿帶]

相關評論

同義詞:暫無同義詞