標籤: 暫無標籤

輻角原理所屬現代詞,指的是數學定理中的一種複分析的重要定理。

1 輻角原理 -概述

圍道 C(黑色),f 的零點(藍色)以及 f 的極點(紅色)。圍道 C(黑色),f 的零點(藍色)以及 f 的極點(紅色)。
在複分析中,輻角原理(Argument principle)或稱柯西輻角原理(Cauchy's argument principle)說如果 f(z) 是在某個圍道 C 上以及內部一個全純函數,且 f 在 C 上沒有零點或極點,則下列公式成立:
公式

這裡 N 與 P 分別表示 f(z) 在圍道 C 內部的零點與極點個數,每個零點計重數極點計階數。定理的陳述假設圍道 C 是簡單的,即沒有自交,以及它是逆時針方向定向的。

更一般地,假設 C 是一條曲線,逆時針方向定向,在複平面中一個開集 Ω 中可縮為一點。對每個 z ∈ Ω,令 n(C,z) 是 C 繞點 z 的卷繞數。則
公式
這裡第一個求和對 f 所有零點 a 進行並計重數,第二個求和在 f 的所有極點 b 上進行。

2 輻角原理 -證明

設 zN 是 f 的一個零點。我們可將 f 寫成 f(z) = (z − zN)kg(z) 這裡 k 是零點的重數,從而 g(zN) ≠ 0。我們有
公式
以及
公式
因 g(zN) ≠ 0,故 g′(z)/g(z)在 zN 沒有奇點,從而在 zN 解析,這意味著 f′(z)/f(z) 在 zN 的留數是 k。

設 zP 是 f 的一個極點。我們可寫成 f(z) = (z − zP)−mh(z) 這裡 m 是極點的階數,從而 h(zP) ≠ 0。則
公式
以及
公式
如上。故 h′(z)/h(z) 在 zP 沒有奇點,因為 h(zP) ≠ 0 從而在 zP 解析。我們發現 f′(z)/f(z) 在 zP 的留數是 −m。

將它們放在一起,f 的每個 k 重零點 zN 產生 f′(z)/f(z) 的一個留數為 k 的單極點,而 f 的每個 m 階極點 zP 產生 f′(z)/f(z) 的一個留數為 −m 的單極點(這裡一個單極點指一階極點)。另外,可以證明 f′(z)/f(z) 沒有其它極點,從而沒有其它留數。

由留數定理我們有關於 C 的積分是 2πi 與這些留數之和的乘積。總之,每個零點 zN 的 k 之和是計重數的零點個數,對極點類似,故我們得到了欲證之結論。

3 輻角原理 -推論

假設 C 是一個以原點為中心的閉圍道,通過考慮 f(z) 關於原點的卷繞數可得出一些推論。我們看到 f′(z)/f(z) 在 C 上的積分是 log f(z) 值的變化。因為 C 是閉的我們只需考慮 i arg f(z) 在 C 上的變化,它將是 2πi 的某個整數倍因為 C 是閉的(但可能繞原點卷多圈)。但從輻角原理
公式
約去因子 2πi,我們得到
公式
這裡 I(C,0) 表示 f 在 C 上關於 0 點卷繞數。

一個推論是更廣泛的定理,在同樣的假設下,如果 g 是 Ω 中一個解析函數,則
公式
例如,如果 f 是以一個簡單圍道 C 內部 z1, ..., zp 為零點的多項式,以及g(z) = zk[上標],則
公式
是 f 的根的冪和對稱函數。

另一個推論是如果我們計算復積分:
公式
對一個合適的 g 與 f,我們有阿貝爾-普蘭納(Plana)公式:
公式
這給出了一個離散和式與它的積分之間的關係。

4 輻角原理 -歷史

按照弗蘭克·史密西斯一書《Cauchy and the Creation of Complex Function Theory》的說法,在奧古斯丁·路易·柯西從法國到都靈(當時皮德蒙特-薩丁尼亞王國的首都)的自我放逐途中,柯西於1831年11月2日提出了和上面類似的一個定理(見177頁)。但是根據此書,只提到了零點,沒有極點。柯西的這個定理在許多年後的1974年才以手寫本發表,故很難閱讀。柯西逝世兩年前的1855年發表的一篇論文中,零點與極點都討論了。定理 1 只涉及了零點。柯西1855年論文中的定理 2 說「一個單復變數函數 Z 的對數計量(compteurs logarithmiques,相當於現代教材中的對數留數)等於 Z 與 1/Z 根的個數之差(相當於現代教材中的函數 Z 的零點與極點)。從而現代「輻角原理」可在1855年柯西論文中作為一個定理髮現。

5 輻角原理 -應用

反饋控制理論的現代書籍中頻繁用到輻角原理,將其作為奈奎斯特穩定性判據的理論基礎。哈里·奈奎斯特1932年原理的論文(H. Nyquist, "Regeneration theory", Bell System Technical Journal, vol. 11, pp. 126-147, 1932)用一種相當笨拙與原始的方法得出奈奎斯特穩定性判據。在這篇論文中,奈奎斯特完全沒有提到柯西的名字。後來,Leroy MacColl (Fundamental theory of servomechanisms, 1945) 與 Hendrik Bode (Network analysis and feedback amplifier design, 1945) 都從輻角原理得到了奈奎斯特穩定性判據。MacColl (Bell Laboratories) 將輻角原理稱為柯西定理。這樣輻角原理在純粹數學與控制工程學中都有重大影響。現在,輻角原理可在複分析或控制工程學的現代教材中都可以找到。

6 輻角原理 -文獻

爾福斯,拉斯(1979)。Complex Analysis.McGraw Hill.

相關評論

同義詞:暫無同義詞