標籤:高等代數

逆矩陣: 設A是數域上的一個n階方陣,若在相同數域上存在另一個n階矩陣B,使得: AB=BA=E。 則我們稱B是A的逆矩陣,而A則被稱為可逆矩陣。

1可逆條件

A是可逆矩陣的充分必要條件是∣A∣≠0,即可逆矩陣就是非奇異矩陣。(當∣A∣=0時,A稱為奇異矩陣)

2求法

A^(-1)=(1/|A|)×A* ,其中A^(-1)表示矩陣A的逆矩陣,其中|A|為矩陣A的行列式,A*為矩陣A的伴隨矩陣。
逆矩陣的另外一種常用的求法:
(A|E)經過初等變換得到(E|A^(-1))。
注意:初等變化只用行(列)運算,不能用列(行)運算。E為單位矩陣。
一般計算中,或者判斷中還會遇到以下11種情況來判斷逆矩陣:
1 秩等於行數
2 行列式不為0
3 行向量(或列向量)是線性無關組
4 存在一個矩陣,與它的乘積是單位陣
5 作為線性方程組的係數有唯一解
6 滿秩
7 可以經過初等行變換化為單位矩陣
8 伴隨矩陣可逆
9 可以表示成初等矩陣的乘積
10 它的轉置可逆
11 它去左(右)乘另一個矩陣,秩不變

3性質

1 矩陣A可逆的充要條件是A的行列式不等於0。
2 可逆矩陣一定是方陣。
3 如果矩陣A是可逆的,A的逆矩陣是唯一的。
4 可逆矩陣也被稱為非奇異矩陣、滿秩矩陣。
5 兩個可逆矩陣的乘積依然可逆。
6 可逆矩陣的轉置矩陣也可逆。
7 矩陣可逆當且僅當它是滿秩矩陣。

4matlab

inv(a)或a^-1。
例如:
>> a =
8 4 9
2 3 5
7 6 1
>> a^-1
ans =
0.1636 -0.3030 0.0424
-0.2000 0.3333 0.1333
0.0545 0.1212 -0.0970
>> inv(a)
ans =
0.1636 -0.3030 0.0424
-0.2000 0.3333 0.1333
0.0545 0.1212 -0.0970
以下是對MATLAB中Inv用法的解釋。
原文(來自matlab help doc)
In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv
arises when solving the system of linear equations Ax=B .
One way to solve this is with x = inv(A)*B.A better way, from both an execution time and numerical accuracy standpoint,is to use the matrix division operator x = A\b.
實際上,很少需要矩陣逆的精確值。在解方程 Ax=B的時候可以使用x = inv(A)*B,
但通常我們求解這種形式的線性方程時,不必要求出A的逆矩陣,在MATLAB中精度更高,速度更快的方法是用左除——x = A\b。
另外,用LU分解法的速度更快,只是要多寫一條LU分解語句。
速度可以通過matlab中tic和toc來估算運行的時間。
上一篇[初等變換]    下一篇 [子空間]

相關評論

同義詞:暫無同義詞