評論(0

量子電動力學

標籤: 暫無標籤

量子電動力學是量子場論發展中歷史最長和最成熟的分支。簡寫為QED。從應用範圍的廣泛、基本假設的簡單明確、與實驗符合程度的高度精確等方面看,在現代物理學中是很突出的。

1 量子電動力學 -量子電動力學

 

2 量子電動力學 -正文

  量子場論發展中歷史最長和最成熟的分支。簡寫為QED。它主要研究電磁場與帶電粒子相互作用的基本過程。在原則上,它的原理概括原子物理、分子物理、固體物理、核物理及粒子物理各領域中的電磁相互作用過程。它研究電磁相互作用的量子性質(即光子的發射和吸收)、帶電粒子(例如正負電子)的產生和湮沒以及帶電粒子之間的散射、帶電粒子與光子之間的散射等。從應用範圍的廣泛、基本假設的簡單明確、與實驗符合程度的高度精確等方面看,在現代物理學中是很突出的。
  發展過程  1925年量子力學創立之後不久,P.A.M.狄喇克於1927年、W.K.海森伯和W.泡利於1929年相繼提出了輻射的量子理論,奠定了量子電動力學的理論基礎。在量子力學範圍內,可以把帶電粒子與電磁場相互作用當作微擾,來處理光的吸收和受激發射問題,但卻不能處理光的自發射問題。因為如果把電磁場作為經典場看待,在發射光子以前根本不存在輻射場。原子中處於激發態的電子是量子力學中的定態,沒有輻射場作為微擾,它就不會發生躍遷。自發射是確定存在的事實,為了解釋這種現象並定量地給出它的發生幾率,在量子力學中只能用變通的辦法來處理。一個辦法是利用對應原理,把原子中處於激發態的電子看成是許多諧振子的總和,把產生輻射的振蕩電流認定與量子力學的某些躍遷矩陣元相對應,用以計算自發射的躍遷幾率。從這個處理辦法可以得到M.普朗克的輻射公式,以此反過來說明對應原理的處理是可行的。另外一種辦法是利用A.愛因斯坦關於自發射幾率和吸收幾率間的關係。雖然這些辦法所得的結果可以和實驗結果符合,但在理論上究竟是與量子力學體系相矛盾的──量子力學的定態壽命為無限大。
  狄喇克、海森伯和泡利對輻射場加以量子化。除了得到光的波粒二象性的明確表述以外,還解決了上述矛盾。電磁場在量子化以後,電場強度E和磁場強度H都成為算符。它們的各分量滿足一定的對易關係,它們的「期待值」(即實驗中的測量平均值)應滿足量子力學的測不準關係,它們不可能同時具有確定值(即均方差同時為零)。作為一個特例,它們不可能同時確定為零。在沒有光子存在的狀態(它被稱為是輻射場的真空態)中,EH的平均值為零。但E2H2的平均值不為零(否則均方差就同時為零了)。這就是量子化輻射場的真空漲落。它與量子力學中諧振子的零點能量子電動力學十分類似。場在量子化以後,產生和湮沒成為普遍的、基本的過程。因此在原子處於激發態時,雖然沒有光子存在,電子仍能向低能態躍遷併產生光子。從輻射場量子理論的表述出發,可以計算各種帶電粒子與電磁場相互作用基本過程的截面,例如康普頓效應、光電效應、軔致輻射、電子對產生和電子對湮沒等。這些結果都是用微擾論方法取最低級不為零的近似得到的,與實驗有較好的符合。但不論是那一種過程,計算高一級近似的結果時,一定遇到發散困難,即得到無限大的結果。這一點是J.R.奧本海默在1930年首先指出的。此後十幾年中,儘管在許多電磁基本過程的研究上,以及在高能輻射在物質中的貫穿和宇宙線的級聯簇射等方面的研究上,量子電動力學繼續有所發展,但在解決基本理論中的發散困難上仍處於相對的停滯狀況。
  1947年實驗物理學提出了挑戰。在此以前,狄喇克相對論波動方程對描述電子行為是十分成功的:它能預指出電子自旋為1/2,磁矩為量子電動力學(稱為玻爾磁子),所給出的氫原子能級和實驗也符合得較好。由於實驗技術的迅速發展,更精確的測量給出氫原子的2P1/2和2S1/2態能量稍有差別,而狄喇克方程給出這兩個狀態能量相同。這個差別稱為蘭姆移位。另外,電子磁矩也略偏離於一個玻爾磁子。在此以前曾考慮過,電子是要和電磁輻射場的真空漲落相互作用的。但計算這種相互作用能遇到了發散困難,因此被擱置起來。在確切的實驗結果面前,就非解決不可了。蘭姆移位發現后一年,H.A.貝特就作了一個估算。他考慮處於2S1/2和2P1/2態的電子和真空漲落的相互作用能雖然都是無限大,但經過一些近似處理它們的差可得出有限值,而且和實驗定性符合。於是如何從無限大中分出有意義的有限部分就成為一系列新的計算的共同指導思想,雖然這些嘗試都還比較成功,但它們都有一個共同的問題:從無限大分出有意義的有限結果的過程都很繁瑣而且不很可靠。因此需要找出明確、簡潔而且在理論上有根據的辦法,它的結果還要和實驗符合。
  新的理論體系是由R.P.費因曼、J.S.施溫格、朝永振一郎、F.J.戴森等人在1948~1949年建立的。他們用「重正化」的概念把發散量確切而不含混地歸入電荷與質量的重新定義之中,從而使高階近似的理論結果都不再包含發散。發散量的處理充分利用了相對論協變性和規範不變性。新理論表述之所以能夠作到確切地處理髮散量,是因為從一開始就把理論表述嚴格地建立在相對論協變形式及規範不變要求的基礎之上。
  在新的理論表述形式下進行了各種過程的高階修正的計算,這些結果都滿足了由於實驗條件和精確度的提高對理論提出的愈來愈高的要求。量子電動力學是一種規範場的理論。將電磁作用和弱作用統一起來是量子場論的一個重要發展階段。電弱統一理論的標準模型以及描述強相互作用的量子色動力學都是屬於規範場理論的範疇。它們的建立都從量子電動力學的理論及方法中得到借鑒和啟示。從量子電動力學的研究中建立起來的重正化理論不僅用於粒子物理,而且對統計物理也是有用的工具(見相和相變、重正化群)。
  自由電磁場的量子化  真空中電磁場的電磁勢可以看成是具有不同波矢kλ的平面波的疊加,在疊加中平面波λ成分的展開係數稱為qλ。電磁場的能量可以通過qλ表示:

量子電動力學

此處量子電動力學是平面波 λ的角頻率。上式右方正是諧振子(角頻率為 ωλ)能量之和。因此,可以把電磁場看成是無窮多諧振子的集合。這是一個無窮多自由度的力學體系:qλ是廣義坐標;pλ=妜λ是廣義動量。根據量子力學,體系的廣義坐標算符和正則共軛的廣義動量算符應滿足對易關係。如將上式中的qλ及妜λ當作這樣的算符,則可以把場的能量及動量算符表示為:

量子電動力學

式中nλ是處於狀態 λ上的光子──電磁場的量子──數算符。場的量子化實際上是量子力學的自然的推廣:把有限自由度力學體系的量子化推廣到無窮維自由度的力學體系中。以上的量子化過程表明,從場的觀點出發,經過量子化就得到了粒子圖像:場的能量(動量)即分別是光子的能量(動量)的和。場量子化以後,代表場的電磁勢就成為算符,它包含各個狀態 λ的光子的產生和湮沒算符,以在理論中反映光子的發射和吸收。這就在理論中體現了波粒二象性。
  量子化的電磁場具有一個重要的特點,即有真空漲落。這種真空漲落是有直接觀測效應的。例如,由於真空漲落,不帶電的平行板電容器極板間存在微弱的引力,而這點已由實驗所證實。當然,最重要的例子還是氫原了能級的蘭姆移位。這個效應的90%是由於電子和電磁場的具空漲落相互作用造成的。
  自由電子場的量子化  狄喇克相對論波動方程成功地描述了電子的微觀性質。為了解決方程的負能量解所帶來的困難,狄喇克提出了「空穴理論」。空穴理論既預言子電子的反粒子──正電子──的存在,也預言了電子對的產生和湮沒兩種現象的存在。但空穴理論也帶來了無限大的真空能量和無限大真空電荷密度的問題。這些困難可以在將狄喇克場量子化時適當定義負能量粒子湮沒算符為反粒子產生算符就可以避免。在相對論性的理論中,不存在真正的單粒子問題。即使是真空態(即電子數與正電子數均為零),也有電子對漲落,而要描述粒子數變化並能避免上述的空穴理論的困難,就必須對電子場進行量子化。對電子場進行量子化,不能採取將共軛力學量作為滿足對易關係的算符處理。在電磁場量子化時採取了對易關係,其結果就是處於一定狀態的光子數算符的本徵值取0、1、2、……等值。但電子是滿足泡利不相容原理的。在一個狀態上的電子數目只能是0或1。要得到這個結果,必須用反對易關係來代替對易關係:

量子電動力學

此處bλ與量子電動力學各代表λ態上電子的湮沒算符及μ態上電子的產生算符。
  兩種不同的量子化方法促使泡利研究自旋統計關係。他發現自旋為整數的粒子(例如光子)服從玻色—愛因斯坦統計,在進行場的量子化時應該用對易關係;自旋為半整數的粒子(例如電子)服從費密—狄喇克統計,在進行場的量子化時應該用反對易關係。對電子場ψ(它滿足狄喇克方程)進行場量子化以後也得到場量子(電子和正電子)的粒子圖像。
  量子化電磁場的極限就是經典電磁場(例如無線電波),在光子數目很大時,電磁場的性質就由經典的麥克斯韋方程組描述。量子化電子場ψ卻沒有類似的經典極限,因為在一個狀態上最多只能存在一個電子。相應的「經典」場方程就是描述單個電子的狄喇克方程,它顯然不是經典的。只有在對電子的描述可以粗略到 ΔpΔq>>啚時,狄喇克電子理論才歸結為滿足狹義相對論的經典力學方程。
  相互作用的量子化場  根據量子場論的觀點,粒子間的相互作用都是通過場與場的相互作用實現的。相互作用場的哈密頓量可以分為兩部分

H=H0+HI,

H0是自由電磁場與自由電子場的哈密頓量之和。它的本徵態就是具有一定光子數與一定電子及正電子數的狀態。HI代表電磁場與電子場的相互作用,它與量子電動力學成正比。此處γμ是狄喇克矩陣;ψ和 徰是電子場及其狄喇克伴隨場算符,它們分別代表電子湮沒(或正電子產生)和電子產生(或正電子湮沒);Aμ是電磁勢算符,代表光子的發射或吸收。自由場的量子場論(由H0所代表)是可以精確解的。但相互作用場的量子場論(由H=H0+HI代表)難於求到精確解。只是由於精細結構常數量子電動力學是個小量,可以把HI當作微擾處理。它的作用是在H0的本徵態之間產生躍遷。躍遷可以不涉及粒子數的變化而只是改變粒子的運動狀態(例如康普頓散射),也可以包括光子、電子和正電子數目的變化。相互作用HI作用在H0的某一個本徵態上可以發生以下的躍遷過程(圖1):

量子電動力學量子電動力學

  ① 電子吸收或發射一個光子之後改變其運動狀態,以圖1a表示;② 正電子吸收或發射一個光子之後改變其運動狀態,以圖1b表示,圖中與時間方向相反的箭頭表示正電子(電子的反粒子);③ 光子轉變為電子—正電子對,以圖1c >表示;④ 電子—正電子對湮沒為光子,以圖1表示。
  由於能量—動量守恆的要求,單獨由HI作用一次還不能構成實際過程。例如康普頓散射

電子(四動量p)+光子(四動量k)→電子(四動量p')+光子(四動量k')

的最低階由圖2a組成,這個圖是由HI作用兩次(圖上相應有兩個頂點),其振幅與電子電荷的二次方值e2成正比,而幾率與e4即與精細結構常數的二次方值α2成正比。正負電子對湮沒為兩個光子最低階由圖2b組成。

量子電動力學量子電動力學

  費因曼發現每個過程都可以用相應的圖表示,稱為費因曼圖。他並給出計算有關過程躍遷幾率的計算規則,稱為費因曼規則。雖然早期的微擾計算也可以得出最低級近似的結果,但為了計算高階近似就需要用重正化方法處理髮散問題,用新的理論表述。費因曼規則就是最常用的方法。一個有n個頂點的圖,其振幅正比於en;而幾率正比於e2n,即αn
  對電子與光子相互作用的基本過程,包括對許多過程的高階近似(稱為輻射修正)已經廣泛地開展了研究。下面列舉一些主要的過程。①電子(正電子)與光子相互作用。束縛電子對光子的吸收和發射、康普頓散射(自由電子對光子的散射)、軔致輻射、光電效應、光子產生正負電子對,正負電子對湮沒為光子、束縛電子對光子的散射等。②電子(正電子)間的相互作用。電子-電子散射、正電子-電子散射、兩個電子間的有效勢、電子—正電子間的有效勢、電子偶素等。
  由於μ-子質量為電子質量的207倍,μ-子原子(即原子中一個電子為μ-子所取代)中μ-子與核的距離比電子的要小得多,它對與原子核的相互作用更為敏感。關於μ-子原子的性質(包括輻射修正)也進行了不少研究。正負電子對轉化為正負 μ子對也是檢驗量子電動力學和研究μ子性質的重要手段,因此也受到重視。
  除上述基本過程以外,量子電動力學還有一些重要的綜合應用。了解高能輻射在物質中的貫穿對進行核物理及高能物理實驗以及輻射屏蔽計算都很重要。以高能γ射線為例:它進入物質后,可以發生三種效應──電子對產生、康普頓散射和光電效應。隨著輻射能量不同,三種效應的相對重要性也因之而異。另外,一個過程還會產生「次級效應」。例如,高能γ射線進入物質,產生了正負電子對。產生的高能電子和正電子又可以產生軔致輻射,發射出高能γ量子。這個高能量子又能產生正負電子對等等。一個高能電子進入物質可以因軔致輻射產生高能γ量子,高能γ量子又產生正負電子對等等。宇宙線的級聯簇射就是由於這類多級過程構成的。基於量子電動力學過程基礎上建立起來的宇宙線級聯簇射理論在30年代後期到40年代初期已經能夠較好地說明實驗現象(見宇宙線物理)。
  重正化及輻射修正  解決發散困難的指導思想就是把理論中所有能產生髮散的基本費因曼圖找出,並通過重新定義一些參量對它們進行處理。在理論中開始引進一些參量如電子電荷e0及質量m0。在考慮了各類、各級修正之後,發現包含發散的基本圖有三種,即電子自能、真空極化和頂角修正。在理論中恰好能夠通過重新定義電子的電荷、質量和場量ψ把這些發散吸收進去。例如,可以重新定義電子質量(稱為重正化質量)me=m0m,此處δm是各級修正中的發散量,然後把me解釋為實驗觀測的電子質量。至於m0,它是不可觀測的,因為它代表電磁場不存在時的電子質量,而不和電磁場相互作用的電子是根本不存在的。經過重正化的處理后,各階修正的結果都不再包含發散。計算的各階輻射修正可和實驗進行比較。著名的兩個例子是蘭姆移位和電子磁矩。
  蘭姆移位  由兩部分修正構成的。一是真空極化效應。由於真空中有虛電子對,因此氫原子的原子核(即質子)就使真空極化,吸引一部分負電荷靠近它,而將正電荷推離它。這種情況是和媒質類似的。由於極化電荷的存在,質子的電場受到屏蔽。在一定距離處觀察質子,它的有效電荷比原有值為小。距離愈小,有效電荷愈大。氫原子的2S1/2態電子距核較2P1/2態的電子為近,感受到的質子有效電荷較大,因此修正的能級位置相對要較低。另一部分修正是電子與電磁場的真空漲落相互作用。它的修正和第一部分的趨勢相反,2S1/2能級的修正較高。第二部分是主要的,它比第一部分修正要大一個量級。例如,有一組人計算得到的理論值是

量子電動力學,

而實驗值是(1057.862±0.020)兆赫。
  電子磁矩  量子電動力學計算的磁矩值由於高階修正偏離一個玻爾磁子量子電動力學。1918年施溫格計算了α一階修正,結果是量子電動力學,而1981年有人計算了α四階修正,得出

μe=1.001159652460(148)μB

而實驗值是

μe=1.001159652209(31)μB

這種實驗的和理論計算的精確度以及它們符合的程度在整個物理學領域中都是罕見的。
  重正化對發散困難的解決並不徹底。它只是用適當的辦法把發散分為兩部分:抽出有意義的有限項而把剩餘的發散和物理上不能直接測量的量合併起來重新定義為物理上的實測量。它並沒有從理論中將發散消除。
  理論的困難、應用範圍及實驗檢驗  量子電動力學中的發散問題仍有待於根本解決。另外,量子電動力學是把電子當作基本場看待的。作為粒子,它是點狀的,也就是沒有結構的。當然,在一定的階段(即能量小於一定限度,或距離大於一定限度)時,這種考慮是合理的,也是必要的。但是這些界限的值是多大,實驗物理學多年來一直在探索這個問題,目的是要觀察在短矩離(高能量)情況下電子偏離點狀的情況。當前,探索的最有力的工具是正負電子對撞機,因為它可以獲得質心繫中很高的能量。用對撞機可以研究正負電子對轉化成正負μ子對的反應

量子電動力學

根據量子電動力學(帶電輕子為點狀),在能量遠大於電子靜止能量時這個過程的截面的最低次近似值是

量子電動力學

S是質心繫能量的二次方。如果在S值很高時發現截面偏離包括輻射修正在內的相應公式的值時,可能就是電子偏離點狀的信號。目前的結果是:在質心繫能量為38GeV時在10-16cm以外電子可以認為是點狀的,或者說電子如有結構,也至少要在10-16cm以下。今後的高能正負電子對撞機可以把這個界限繼續往下壓縮,或許在距離小於某一極限時發現電子結構。
  現在量子電動力學的計算結果都要依靠微擾論。這是基於量子電動力學是個小參量的前提之上的。但由於真空極化效應,在距離愈來愈小時,α的值隨著電荷的有效值增大。這遲早會使基於微擾論的結果失效。但實際上這要到距離小到量子電動力學亦即1.22×10-70厘米時才會發生。但早在到達這個距離之前就必須考慮其他效應了。當距離小到史瓦西半徑1.352×10-55厘米時,電子周圍的時空度規已顯著偏離閔可夫斯基度規,而引力作用就必須加以考慮。在這以前就會遇到普朗克距離1.616×10-33cm(相當1.221×1019GeV),此時時空度規會發生較大的漲落,量子引力就應予以考慮(見廣義相對論)。根據SU(5)的大統一理論,到距離1.97×10-29cm(相當1015GeV)電磁耦合常數就和弱相互作用、強相互作用的耦合常數匯合在一起成為大統一的耦合常數了,而它將隨距離減小而下降。看來極為可能的是,距離小到一定程度時,電子已不僅和電磁場相互作用,而其他相互作用在強度上都會和電磁作用相比,因而會出現具有豐富內容的物理現象,從而使人類有可能揭示更深刻的物理規律。事實在已經觀察到電弱統一理論的標準模型中所預言的電磁相互作用和弱相互作用的干涉效應。
  參考書目
 W.Heitler,The Quantum Theory of Radiation, 3rd ed.,Oxford Univ. Press, Oxford,1954.

 

3 量子電動力學 -配圖

 

4 量子電動力學 -相關連接

上一篇[yes族]    下一篇 [三低同事]

相關評論

同義詞:暫無同義詞