評論(0

雷達[電子設備]

標籤: 暫無標籤

雷達概念形成於20世紀初。雷達是英文radar的音譯,為Radio Detection And Ranging的縮寫,意為無線電檢測和測距,是利用微波波段電磁波探測目標的電子設備。

1 雷達[電子設備] -簡介

雷達雷達

雷達(radar)是利用微波波段電磁波探測目標的電子設備。發射電磁波對目標進行照射並接收其回波,由此獲得目標至雷達的距離、距離變化率(徑向速度)、方位、高度等信息。電磁波同聲波一樣,遇到障礙物要發生反射,雷達就是利用電磁波的這個特性工作的。波長越短的電磁波,傳播的直線性越好,反射性能越強,因此,雷達用的是微波波段的無線電波。雷達是英文RADAR(Radio Detection And Ranging)的譯音,意為「無線電檢測和測距」。雷達的優點是白天黑夜均能檢測到遠距離的較小目標,不為霧、雲和雨所阻擋。雷達是現代戰爭必不可少的電子裝備。它不僅應用于軍事,而且也應用於國民經濟(如交通運輸、氣象預報和資源探測等)和科學研究(如航天、大氣物理、電離層結構和天體研究等)以及其他一些領域。

2 雷達[電子設備] -組成

各種雷達的具體用途和結構不盡相同,但基本形式是一致的,包括五個基本組成部分:發射機、發射天線、接收機、接收天線以及顯示器。還有電源設備、數據錄取設備、抗干擾設備等輔助設備。

3 雷達[電子設備] -原理

雷達所起的作用和眼睛相似,當然,它不再是大自然的傑作,同時,它的信息載體是無線電波。 事實上,不論是可見光或是無線電波,在本質上是同一種東西,都是電磁波,傳播的速度都是光速C,差別在於它們各自佔據的波段不同。其原理是雷達設備的發射機通過天線把電磁波能量射向空間某一方向,處在此方向上的物體反射碰到的電磁波;雷達天線接收此反射波,送至接收設備進行處理,提取有關該物體的某些信息(目標物體至雷達的距離,

雷達雷達

距離變化率或徑向速度、方位、高度等)。

測量距離實際是測量發射脈衝與回波脈衝之間的時間差,因電磁波以光速傳播,據此就能換算成目標的精確距離。

測量目標方位是利用天線的尖銳方位波束測量。測量仰角靠窄的仰角波束測量。根據仰角和距離就能計算出目標高度。

測量速度是雷達根據自身和目標之間有相對運動產生的頻率多普勒效應原理。雷達接收到的目標回波頻率與雷達發射頻率不同,兩者的差值稱為多普勒頻率。從多普勒頻率中可提取的主要信息之一是雷達與目標之間的距離變化率。當目標與干擾雜波同時存在於雷達的同一空間分辨單元內時,雷達利用它們之間多普勒頻率的不同能從干擾雜波中檢測和跟蹤目標。

4 雷達[電子設備] -無線電波

(圖)無線電波無線電波

無線電波雷達有一個特製的可以轉動的無線,它能向一定的方向發射不連續的無線電波。每次發射的時間約為百萬分之一 秒,兩次發射的時間間隔大約是萬分之一秒,這樣,發射出去的無線電波遇到障礙物時,可以在這個時間間隔內反射回來被無線接收。

根據公式2S=ct來確定障礙物的距離S,再根據發射無線電波的方向和仰角,便可以確定障礙物的位置了。

利用雷達可以探測飛機、艦艇、導彈以及其他軍事目標,除了軍事用途外,雷達在交通運輸上可以用來為飛機、船隻導航,在天文學上可以用來研究星體,在氣象上可以用來探測颱風,雷雨,烏雲。

5 雷達[電子設備] -種類

(圖)雷達雷達

雷達種類很多,可按多種方法分類:
(1)按定位方法可分為:有源雷達、半有源雷達和無源雷達。
(2)按裝設地點可分為;地面雷達、艦載雷達、航空雷達、衛星雷達等。
(3)按輻射種類可分為:脈衝雷達和連續波雷達。
(4)按工作被長波段可分:米波雷達、分米波雷達、厘米波雷達和其它波段雷達。
(5)按用途可分為:目標探測雷達、偵察雷達、武器控制雷達、飛行保障雷達、氣象雷達、導航雷達等。
相控陣雷達是一種新型的有源電掃陣列多功能雷達。它不但具有傳統雷達的功能,而且具有其它射頻功能。有源電掃陣列的最重要的特點是能直接向空中輻射和接收射頻能量。它與機械掃描天線系統相比,有許多顯著的優點。

6 雷達[電子設備] -波段劃分

最早用於搜索雷達的電磁波波長度為23cm,這一波段被定義為L波段(英語Long的字頭),後來這一波段的中心波長度變為22cm。 當波長為10cm的電磁波被使用后,其波段被定義為S波段(英語Short的字頭,意為比原有波長短的電磁波)。

在主要使用3cm電磁波的火控雷達出現后,3cm波長的電磁波被稱為X波段,因為X代表坐標上的某點。

為了結合X波段和S波段的優點,逐漸出現了使用中心波長為5cm的雷達,該波段被稱為C波段(C即Compromise,英語「結合」一詞的字頭)。

在英國人之後,德國人也開始獨立開發自己的雷達,他們選擇1.5cm作為自己雷達的中心波長。這一波長的電磁波就被稱為K波段(K = Kurtz,德語中「短」的字頭)。

「不幸」的是,德國人以其日爾曼民族特有的「精確性」選擇的波長可以被水蒸氣強烈吸收。結果這一波段的雷達不能在雨中和有霧的天氣使用。戰後設計的雷達為了避免這一吸收峰,通常使用頻率略高於K波段的Ka波段(Ka,即英語K-above的縮寫,意為在K波段之上)和略低(Ku,即英語K-under的縮寫,意為在K波段之下)的波段。

最後,由於最早的雷達使用的是米波,這一波段被稱為P波段(P為Previous的縮寫,即英語「以往」的字頭)。

該系統十分繁瑣、而且使用不便。終於被一個以實際波長劃分的波分波段系統取代,這兩個系統的換算如下。

原 P波段 = 現 A/B 波段

原 L波段 = 現 C/D 波段

原 S波段 = 現 E/F 波段

原 C波段 = 現 G/H 波段

原 X波段 = 現 I/J 波段

原 K波段 = 現 K 波段

7 雷達[電子設備] -簡史

(圖)雷達雷達

雷達的基本概念形成於20世紀初。但是直到第二次世界大戰前後,雷達才得到迅速發展。早在20世紀初,歐洲和美國的一些科學家已知道電磁波被物體反射的現象。1922年,義大利G.馬可尼發表了無線電波可能檢測物體的論文。美國海軍實驗室發現用雙基地連續波雷達能發覺在其間通過的船隻。1925年,美國開始研製能測距的脈衝調製雷達,並首先用它來測量電離層的高度。30年代初,歐美一些國家開始研製探測飛機的脈衝調製雷達。1936年,美國研製出作用距離達40公里、分辨力為457米的探測飛機的脈衝雷達。1938年,英國已在鄰近法國的本土海岸線上布設了一條觀測敵方飛機的早期報警雷達鏈。

第二次世界大戰期間,由於作戰需要,雷達技術發展極為迅速。就使用的頻段而言,戰前的器件和技術只能達到幾十兆赫。大戰初期,德國首先研製成大功率三、四極電子管,把頻率提高到500兆赫以上。這不僅提高了雷達搜索和引導飛機的精度,而且也提高了高射炮控制雷達的性能,使高炮有更高的命中率。1939年,英國發明工作在3000兆赫的功率,地面和飛機上裝備了採用這種磁控管的微波雷達,使盟軍在空中作戰和空-海作戰方面獲得優勢。大戰後期,美國進一步把磁控管的頻率提高到10吉赫,實現了機載雷達小型化並提高了測量精度。在高炮火控方面,美國研製的精密自動跟蹤雷達SCR-584,使高炮命中率從戰爭初期的數千發炮彈擊落一架飛機,提高到數十發擊中一架飛機。

40年代後期出現了動目標顯示技術,這有利於在地雜波和雲雨等雜波背景中發現目標。高性能的動目標顯示雷達必須發射相干信號,於是研製了功率、、前向波管等器件。50年代出現了高速噴氣式飛機,60年代又出現了低空突防飛機和中、遠程導彈以及軍用衛星,促進了雷達性能的迅速提高。60~70年代,電子計算機、、和大規模數字集成電路等應用到雷達上,使雷達性能大大提高,同時減小了體積和重量,提高了可靠性。在雷達新體制、新技術方面,50年代已較廣泛地採用了動目標顯示、單脈衝測角和跟蹤以及脈衝壓縮技術等;60年代出現了;70年代固態相控陣雷達和脈衝多普勒雷達問世。

在中國,雷達技術從50年代初才開始發展起來。中國研製的雷達已裝備軍隊。中國已經研製成防空用的二坐標和三坐標警戒引導雷達、地-空導彈制導雷達、遠程導彈初始段靶場測量雷達和再入段靶場測量與回收雷達。中國研製的大型雷達還用於觀測中國和其他國家發射的人造衛星。在民用方面,遠洋輪船的導航和防撞雷達、飛機場的航行管制雷達以及氣象雷達等均已生產和應用。中國研製成的機載合成孔徑雷達已能獲得大面積清晰的測繪地圖。中國研製的新一代雷達均已採用計算機或微處理器,並應用了中、大規模集成電路的數字式信息處理技術,頻率已擴展至毫米波段。

8 雷達[電子設備] -發展年表

1842年多普勒(Christian Andreas Doppler)率先提出利用多普勒效應的多普勒式雷達。
1864年馬克斯威爾(James Clerk Maxwell)推導出可計算電磁波特性的公式。 
1886年赫茲(Heinerich Hertz)展開研究無線電波的一系列實驗。
1888年赫茲成功利用儀器產生無線電波。
1897年湯普森(JJ Thompson)展開對真空管內陰極射線的研究。
1904年侯斯美爾(Christian Hülsmeyer)發明電動鏡(telemobiloscope),是利用無線電波回聲探測的裝置,可防止海上船舶相撞。
1906年德弗瑞斯特(De Forest Lee)發明真空三極體,是世界上第一種可放大信號的主動電子元件。 
1916年馬可尼( Marconi)和富蘭克林(Franklin)開始研究短波信號反射。 
1917年沃森瓦特(Robert Watson-Watt)成功設計雷暴定位裝置。
1922年馬可尼在美國電氣及無線電工程師學會(American Institutes of Electrical and Radio Engineers)發表演說,題目是可防止船隻相撞的平面角雷達。 
1922年美國泰勒和楊建議在兩艘軍艦上裝備高頻發射機和接收機以搜索敵艦。
1924年英國阿普利頓和巴尼特通過電離層反射無線電波測量賽層(ionosphere)的高度。美國布萊爾和杜夫用脈衝波來測量亥維塞層。
1925年貝爾德(John L. Baird)發明機動式電視(現代電視的前身)。
1925年伯烈特(Gregory Breit)與杜武(Merle Antony Tuve)合作,第一次成功使用雷達,把從電離層反射回來的無線電短脈衝顯示在陰極射線管上。
1931年美國海軍研究實驗室利用拍頻原理研製雷達,開始讓發射機發射連續波,三年後改用脈衝波。
1935年法國古頓研製出用磁控管產生16厘米波長的撜習窖捌鰏,可以在霧天或黑夜發現其他船隻。這是雷達和平利用的開始。
1936年1月英國W.瓦特在索夫克海岸架起了英國第一個雷達站。英國空軍又增設了五個,它們在第二次世界大戰中發揮了重要作用。
1937年馬可尼公司替英國加建20個鏈向雷達站。
1937年美國第一個軍艦雷達XAF試驗成功。
1937年瓦里安兄弟(Russell and Sigurd Varian)研製成高功率微波振蕩器,又稱速調管(klystron)。
1939年布特(Henry Boot)與蘭特爾(John T. Randall)發明電子管,又稱共振穴磁控管(resonant-cavity magnetron )。

雷達預警雷達

1941年蘇聯最早在飛機上裝備預警雷達。
1943年美國麻省理工學院研製出機載雷達平面位置指示器,可將運動中的飛機柏攝下來,他膠發明了可同時分辨幾十個目標的微波預警雷達。
1944年馬可尼公司成功設計、開發並生產「布袋式」(bagful)系統,以及「地氈式」(Carpet)雷達干擾系統。前者用來截取德國的無線電通訊,而後者則用來裝備英國皇家空軍(RAF)的轟炸機隊。 
1945年二次大戰結束后,全憑裝有特別設計的真空管──磁控管的雷達,盟軍得以打敗德國。
1947年美國貝爾電話實驗室研製出線性調頻脈衝雷達。
50年代中期美國裝備了超距預警雷達系統,可以探尋超音速飛機。不久又研製出脈衝多普勒雷達。
1959年美國通用電器公司研製出彈道導彈預警雷達系統,可發跟蹤3000英裡外,600英里高的導彈,預警時間為20分鐘。
1964年美國裝置了第一個空間軌道監視雷達,用於監視人造地球衛星或空間飛行器。
1971年加拿大伊朱卡等3人發明全息矩陣雷達。與此同時,數字雷達技術在美國出現。

9 雷達[電子設備] -應用

(圖)雷達雷達
雷達的優點是白天黑夜均能探測遠距離的目標,且不受霧、雲和雨的阻擋,具有全天候、全天時的特點,並有一定的穿透能力。因此,它不僅成為軍事上必不可少的電子裝備,而且廣泛應用於社會經濟發展(如氣象預報、資源探測、環境監測等)和科學研究(天體研究、大氣物理、電離層結構研究等)。星載和機載合成孔徑雷達已經成為當今遙感中十分重要的感測器。以地面為目標的雷達可以探測地面的精確形狀。其空間分辨力可達幾米到幾十米,且與距離無關。雷達在洪水監測、海冰監測、土壤濕度調查、森林資源清查、地質調查等方面顯示了很好的應用潛力。

10 雷達[電子設備] -發明

在本世紀30年代,無線電技術出現了重大的突破,那就是雷達的發明。雷達又稱作無線電測位。是利用無線電波的反射,來測量遠處靜止或移動目標的距離和方位,並辨認出被測目標的性質和形狀。

早在1887年,赫茲進行驗證電磁波存在的實驗時就曾發現:發射的電磁波會被一大塊金屬片反射回來,正如光會被鏡面反射一樣。

雷達中國旋轉雷達罩式預警機

1897年夏天,在波羅的海的海面上,俄國科學家波波夫在「非洲號」巡洋艦和「歐洲號」練習船上直接進行5千米的通信試驗時,發現每當聯絡艦「伊林中尉號」在兩艦之間通過時,通信就中斷,波波夫在工作日記上記載了障礙物對電磁波傳播的影響,並在試驗記錄中提出了利用電磁波進行導航的可能性。這可以說是雷達思想的萌芽。

1921年業餘無線電愛好者發現了短波可以進行洲際通信后,科學家們發現了電離層。短波通信風行全球。

1934年,一批英國科學家在R.W.瓦特領導下對地球大氣層進行研究。有一天,瓦特被一個偶然觀察到的現象吸引住了。它發現熒光屏上出現了一連串明亮的光點,但從亮度和距離分析,這些光點完全不同於被電離層反射回來的無線電回波信號。經過反覆實驗,他終於弄清,這些明亮的光點顯示的正是被實驗室附近一座大樓所反射的無線電回波信號。瓦特馬上想到,在熒光屏上既然可以清楚地顯示出被建築物反射的無線電信號,那麼活動的目標例如空中的飛機,不是也可以在熒光屏上得到反映嗎?

根據上述的設想,瓦特和一批英國電機工程師終於在1935年研製成功第一部能用來探測飛機的雷達。後來,探測的目標又迅速擴展到船舶、海岸、島嶼、山峰、礁石、冰山,以及一切能夠反射電磁波的物體。

當時研製雷達純粹是為了軍事需要,因此是在保密狀態下進行的。實際上,幾乎在同一時期,各國的科學家們都在保密的條件下獨立地開展這方面的工作,都有傑出的代表人物。R.W瓦特只能說是在這方面已為大家知曉的代表人物而已。

到1939年為止,一些國家秘密發展起來的雷達技術已達到了完全實用的地步。就在這一年,爆發了第二次世界大戰,這項新發明在二戰中顯示出了它的巨大威力。

相關評論

同義詞:暫無同義詞