評論(0

電力電子技術

標籤: 暫無標籤

電力電子技術是利用電力電子器件實現工業規模電能變換的技術,有時也稱為功率電子技術。一般情況下,它是將一種形式的工業電能轉換成另一種形式的工業電能。是建立在電子學、電工原理和自動控制三大學科上的新興學科。

1 電力電子技術 -電力電子技術

 

2 電力電子技術 -正文

  利用電力電子器件實現工業規模電能變換的技術,有時也稱為功率電子技術。一般情況下,它是將一種形式的工業電能轉換成另一種形式的工業電能。例如,將交流電能變換成直流電能或將直流電能變換成交流電能;將工頻電源變換為設備所需頻率的電源;在正常交流電源中斷時,用逆變器(見電力變流器)將蓄電池的直流電能變換成工頻交流電能。應用電力電子技術還能實現非電能與電能之間的轉換。例如,利用太陽電池將太陽輻射能轉換成電能。與電子技術不同,電力電子技術變換的電能是作為能源而不是作為信息感測的載體。因此人們關注的是所能轉換的電功率。
  電力電子技術是建立在電子學、電工原理和自動控制三大學科上的新興學科。因它本身是大功率的電技術,又大多是為應用強電的工業服務的,故常將它歸屬於電工類。電力電子技術的內容主要包括電力電子器件、電力電子電路和電力電子裝置及其系統。電力電子器件以半導體為基本材料,最常用的材料為單晶硅;它的理論基礎為半導體物理學;它的工藝技術為半導體器件工藝。近代新型電力電子器件中大量應用了微電子學的技術。電力電子電路吸收了電子學的理論基礎,根據器件的特點和電能轉換的要求,又開發出許多電能轉換電路。這些電路中還包括各種控制、觸發、保護、顯示、信息處理、繼電接觸等二次迴路及外圍電路。利用這些電路,根據應用對象的不同,組成了各種用途的整機,稱為電力電子裝置。這些裝置常與負載、配套設備等組成一個系統。電子學、電工學、自動控制、信號檢測處理等技術常在這些裝置及其系統中大量應用。
  電力電子器件  1902年出現了第一個玻璃的汞弧整流器。1910年出現了鐵殼汞弧整流器。用汞弧整流器代替機械式開關和換流器,這是電力電子技術的發端。1920年試製出氧化銅整流器,1923年出現了硒整流器。30年代,這些整流器開始大量用於電力整流裝置中。20世紀40年代末出現了晶體管。20世紀50年代初,晶體管向大功率化發展,同時用半導體單晶材料製成的大功率二極體也得到發展。1954年,瑞典通用電機公司(ASEA公司)首先將汞弧管用於高壓整流和逆變,並在±100千伏直流輸電線路上應用,傳輸20兆瓦的電力。1956年,美國人J.莫爾製成晶閘管雛型。1957年,美國人R.A.約克製成實用的晶閘管。50年代末晶閘管被用於電力電子裝置,60年代以來得到迅速推廣,並開發出一系列派生器件,拓展了電力電子技術的應用領域。
  電力電子電路  隨著晶閘管應用的推廣,開發出許多電力電子電路,按其功能可分為:①將交流電能轉換成直流電能的整流電路;②將直流電能轉換成交流電能的逆變電路;③將一種形式的交流電能轉換成另一種形式的交流電能的交流變換電路;④將一種形式的直流電能轉換成另一種形式的直流電能的直流變換電路。這些電路都包含晶閘管,而每個晶閘管都需要相應的觸發器。於是配合這些電力電子電路出現了許多的觸發控制電路。根據所用的器件,這些控制電路大體上可以分為3代。第一代的控制電路主要由分立的電子元件(如晶體管、二極體)組成。直到80年代後期,還用得不少。第二代由集成電路組成。自從1958年美國出現了世界上第一個集成電路以來,發展異常迅速。它應用到電力電子裝置的控制電路中,使其結構緊湊,功能和可靠性得到提高。第三代由微機進行控制。70年代以來,由於微機的發展使電力電子裝置進一步朝實現智能化的方向進步。
  電力電子裝置  隨著電力電子電路的發展和完善,由晶閘管組成的許多類型的電力電子裝置不斷出現。如大功率的電解電源、焊接電源、電鍍用的直流電源;直流和交流牽引、直流傳動、交流串級調速、變頻調速等傳動用電源;勵磁、無功靜止補償、諧波補償等電力系統用的電力電子裝置;低頻、中頻、高頻電源等各種非工頻電源,尤其是感應加熱的中高頻電源;不停電電源、交流穩壓電源等各種工業用電力電子電源;各種調壓器等等。這些電力電子裝置,與傳統的電動機-發電機組比,有較高的電效率(以容量10千瓦至數百千瓦、頻率為1000赫的電動機-發電機組為例,在額定負載下,效率η=80%,並隨負載減小而顯著降低,若用晶閘管電源,η≥92%,且隨負載變化不大),因此,有明顯的節能效果。電力電子裝置是靜止式裝置,佔地面積小,重量輕,安裝方便(以焊接電源為例,與旋轉焊機相比,重量減輕80%,節能15%)。同時,電力電子裝置往往對頻率、電壓等的調節比較容易,響應快,功能多,自動化程度高,因此用於工業上不但明顯節能,還往往能提高生產率和產品質量,節省原材料,並常能改善工作環境。但電力電子裝置大多為電子開關式裝置,它往往對電網和負載產生諧波干擾,有時還對周圍環境引起一定的高頻干擾,這是在設計這些裝置和系統時必須妥善解決的(見高次諧波抑制)。
  進展  從20世紀50年代中到70年代末,以大功率硅二極體、雙極型功率晶體管和晶閘管應用為基礎(尤其是晶閘管)的電力電子技術發展比較成熟。70年代末以來,兩個方面的發展對電力電子技術引起了巨大的衝擊。其一為微機的發展對電力電子裝置的控制系統、故障檢測、信息處理等起了重大作用,今後還將繼續發展;其二為微電子技術、光纖技術等滲透到電力電子器件中,開發出更多的新一代電力電子器件。其中除普通晶閘管向更大容量(6500伏、3500安)發展外,門極可關斷晶閘管(GTO)電壓已達4500伏,電流已達 2500~3000安;雙極型晶體管也向著更大容量發展,80年代中後期其工業產品最高電壓達1400伏,最大電流達400安,工作頻率比晶閘管高得多,採用達林頓結構時電流增益可達75~200。 隨著光纖技術的發展,美國和日本於1981~1982年間相繼研製成光控晶閘管並用於直流輸電系統。這種光控管與電觸發的晶閘管相比,簡化了觸發電路,提高了絕緣水平和抗干擾能力,可使變流設備向小型、輕量方向發展,既降低了造價,又提高運行的可靠性。同時,場控電力電子器件也得到發展,如功率場效應晶體管(power MOSFET)和功率靜電感應晶體管(SIT)已達千伏級和數十至數百安級的電壓、電流等級,中小容量的工作頻率可達兆赫級。由場控和雙極型合成的新一代電力電子器件,如絕緣柵雙極型晶體管(IGT或IGBT)和MOS控制晶閘管(MCT)也正在興起,容量也已相當大。這些新器件均具有門極關斷能力,且工作頻率可以大大提高,使電力電子電路更加簡單,使電力電子裝置的體積、重量、效率、性能等各方面指標不斷提高,它將使電力電子技術發展到一個更新的階段。與此同時,電力電子器件、電力電子電路和電力電子裝置的計算機模擬和模擬技術也在不斷發展。

 

3 電力電子技術 -配圖

 

4 電力電子技術 -相關連接

上一篇[牛富]    下一篇 [單片微機原理與應用]

相關評論

同義詞:暫無同義詞