標籤:坐標計算的基本公式

面積公式包括 扇形面積共式,圓形面積公式,弓形面積公式,菱形面積公式,三角形面積公式,梯形面積公式等多種圖形的面積公式。

1扇形公式

在半徑為R的圓中,因為360°的圓心角所對的扇形的面積就是圓面積S=πR^2,所以圓心角為n°的扇形面積:
S=n(圓心角)xπ(圓周率)xr 2【半徑的平方(2次方)】/360
比如:半徑為1cm的圓,那麼所對圓心角為135°的扇形的周長:
C=2R+nπR÷180
=2×1+135×3.14×1÷180
=2+2.355
=4.355(cm)=43.55(mm)
扇形的面積:
S=nπR^2÷360
=135×3.14×1×1÷360
=1.1775(cm^2)=117.75(mm^2)
扇形還有另一個面積公式
S=(1/2)Rl
其中l為弧長,R為半徑

2扇環面積

圓環周長:外圓的周長+內圓的周長(圓周率X(大直徑+小直徑))
圓環面積:外圓面積-內圓面積(圓周率X大半徑的平方-圓周率X小半徑的平方\圓周率X(大半徑的平方-小半徑的平方)
用字母表示:
S內+S外(∏R方)
S外—S內=∏(R方-r方)
還有第二種方法:
S=π[(R-r)×(R+r)]
R=大圓半徑
r=圓環寬度=大圓半徑-小圓半徑
還有一種方法:
已知圓環的外直徑為D,圓環厚度(即外內半徑之差)為d。
d=R-r,
D-d=2R-(R-r)=R+r,
可由第一、二種方法推得 S=π[(R-r)×(R+r)]=π(D-d)×d,
圓環面積S=π(D-d)×d
這是根據外直徑和圓環厚度(即外內半徑之差)得出面積。這兩個數據在現實易於測量,適用於計算實物,例如圓鋼管。

3三角形公式

坐標公式
1:△ABC,三頂點的坐標分別為 A(a1,a2),B(b1,b2)C(c1,c2),
S△ABC=∣a1b2+b1c2+c1a2-a1c2-c1b2-b1a2∣/2.
2:空間△ABC,三頂點的坐標分別為A(a1,a2,a3),B(b1,b2,b3)C(c1,c2c3),面積為S,則
S^2=(a1b2+b2c2+c1a2-a1c2-c1b2-b1a2)^2+(a2b3+b2c3+c2a3-a2c3-c2b3-b2a3)^2+
(a1b3+b1c3+c1a3-a1c3-c1b3-b1a3)^2.

4圓公式

設圓半徑為 :r, 面積為 :S .
則 面積 S= π·r^2 ; π 表示圓周率
即 圓面積 等於 圓周率 乘以 圓半徑的平方

5弓形公式

設弓形AB所對的弧為弧AB,那麼:
當弧AB是劣弧時,那麼S弓形=S扇形-S△AOB(A、B是弧的端點,O是圓心)。
當弧AB是半圓時,那麼S弓形=S扇形=1/2S圓=1/2×πr^2。
當弧AB是優弧時,那麼S弓形=S扇形+S△AOB(A、B是弧的端點,O是圓心)
計算公式分別是:
S=nπR^2÷360-ah÷2
S=πR^2/2
S=nπR^2÷360+ah÷2

6橢圓公式

橢圓面積公式: S=πab 橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
橢圓面積公式應用實例
橢圓的長半軸為8cm,短半軸為6cm,假設π=3.14,求該橢圓的面積。
  答:S=πab=3.14*8*6=150.72(cm²)

7菱形公式

定理應用
下面介紹定理及推論的一些應用:
例1 (課本P.57例1)求直線y=x+被拋物線y=x^2截得的線段的長?
分析:題中所給方程與定理中的方程形式不一致,可把x看成y用①即可.
解 曲線方程可變形為x^2=2y則P=1,直線方程可變形為x=y-,
即k=1,b=-.由①得∣AB∣=4.
例2 求直線2x+y+1=0到曲線y^2-2x-2y+3=0的最短距離.
分析:可求與已知直線平行並和曲
線相切的直線,二直線間距離即為要求的最短距離.
解 曲線可變形為(y-1)^2=2(x-1)則P=1,由2x+y+1=0知k=-2.由推論2,令2bk=P,解得b=-.∴所求直線方
程為y-1=-2(x-1)-,即2x+y-=0. ∴.
故所求最短距離為.
例3 當直線y=kx+1與曲線y=-1有交點時,求k的範圍.
解 曲線可變形為(y+1)^2=x+1
(x≥-1,y≥-1) ,則P=1/2.直線相應地可變為 y+1=k(x+1)-k+2,∴b=2-k.由推論2,令2bk≤P,即2k(2-k)≤,解得k≤1-或k≥1+.故k≤1-或k≥1+時直線與曲線有交點.
注:曲線作怎樣變形,直線也必須作相應平移變形,否則會出現錯誤.
例4 拋物線y^2=2Px內接直角三角形,一直角邊所在直線為y=2x,斜邊長為5.求拋物線的方程.
解 設直角三角形為AOB.由題設知kOA=2,kOB=-.由①, |OA|=,
|OB|=4P.由|OA|2+|OB|2=|AB|2,得P=.∴拋物線方程為y^2=x.
例5設O為拋物線的頂點,F為焦點,PQ為過的弦,己知∣OF∣=a,∣PQ∣=b,.求SΔOPQ
解 以O為原點,OF為x軸建立直角坐標系(見圖),依題設條件,拋物線方程為y^2=4ax(P=2a),設PQ的斜率為k,由②|PQ|=,
已知|PQ|=b,k^2=.∵k^2=tg2θ∴sin2θ=.即sinθ=,
∴SΔOPQ=SΔOPF+SΔOQF =a|PF|sinθ+a|FQ|sin(π-θ)=ab sinθ=.

常見的面積定理

1. 一個圖形的面積等於它的各部分面積的和;
2. 兩個全等圖形的面積相等;
3. 等底等高的三角形、平行四邊形、梯形(梯形等底應理解為兩底的和相等)的面積相等;
4. 等底(或等高)的三角形、平行四邊形、梯形的面積比等於其所對應的高(或底)的比;
5. 相似三角形的面積比等於相似比的平方;
6. 等角或補角的三角形面積的比,等於夾等角或補角的兩邊的乘積的比;等角的平行四邊形面積比等於夾等角的兩邊乘積的比;
7. 任何一條曲線都可以用一個函數y=f(x)來表示,那麼,這條曲線所圍成的面積就是對X求積分
下一篇[割圓術]

相關評論

同義詞:暫無同義詞