標籤: 暫無標籤

Audio是英文單詞,有多種含義:Audio是AU格式一種經過壓縮的數字聲音格式的詳寫;Audio是音頻的單詞;Audio是聽覺的單詞。

1 Audio -聲音格式

AudioAudio聲音格式
Audio文件是SunMicosystems公司推出的一種經過壓縮的數字聲音格式,即AU格式。是Internet中常用的聲音文件格式。AU文件原先是UNIX操作系統下的數字聲音文件。由於早期Internet上的Web伺服器主要是基於UNIX的,所以.AU格式的文件在的Internet中是常用的聲音文件格式,NetscapeNavigator瀏覽器中的LiveAudio也支持Audio格式的聲音文件。



2 Audio -音頻

AudioAudio音頻
定義
1、Audio,指人說話的聲音頻率,通常指300Hz-3400Hz的頻帶。
2、指存儲聲音內容的文件。  
3、在某些方面能指作為波濾的振動。  
音頻這個專業術語,人類能夠聽到的所有聲音都稱之為音頻,它可能包括噪音、聲音被錄製下來以後,無論是說話聲、歌聲、樂器都可以通過數字音樂軟體處理。把它製作成CD,這時候所有的聲音沒有改變,因為CD本來就是音頻文件的一種類型。而音頻只是儲存在計算機里的聲音。演講和音樂,如果有計算機加上相應的音頻卡,可以把所有的聲音錄製下來,聲音的聲學特性,音的高低都可以用計算機硬碟文件的方式儲存下來。反過來,也可以把儲存下來的音頻文件通過一定的音頻程序播放,還原以前錄下的聲音。
特點  
要在計算機內播放或是處理音頻文件,也就是要對聲音文件進行數模轉換,這個過程同樣由採樣和量化構成,人耳所能聽到的聲音,最低的頻率是從20Hz起一直到最高頻率20KHZ,20KHz以上人耳是聽不到的,因此音頻的最大帶寬是20KHZ,故而採樣速率需要介於40~50KHZ之間,而且對每個樣本需要更多的量化比特數。音頻數字化的標準是每個樣本16位-96dB的信噪比,採用線性脈衝編碼調製PCM,每一量化步長都具有相等的長度。在音頻文件的製作中,正是採用這一標準。  
CD格式  
AudioAudio
在大多數播放軟體的「打開文件類型」中,都可以看到*.cda格式,這就是CD音軌了。標準CD格式也就是44.1K的採樣頻率,速率88K/秒,16位量化位數,因為CD音軌可以說是近似無損的,因此它的聲音基本上是忠於原聲的,因此如果如果是一個音響發燒友的話,CD是首選。它會讓你感受到天籟之音。CD光碟可以在CD唱機中播放,也能用電腦里的各種播放軟體來重放。一個CD音頻文件是一個*.cda文件,這只是一個索引信息,並不是真正的包含聲音信息,所以不論CD音樂的長短,在電腦上看到的「*.cda文件」都是44位元組長。注意:不能直接的複製CD格式的*.cda文件到硬碟上播放,需要使用象EAC這樣的抓音軌軟體把CD格式的文件轉換成WAV,這個轉換過程如果光碟驅動器質量過關而且EAC的參數設置得當的話,可以說是基本上無損抓音頻。  
WAV  
是微軟公司開發的一種聲音文件格式,它符合PIFFResourceInterchangeFileFormat文件規範,用於保存WINDOWS平台的音頻信息資源,被WINDOWS平台及其應用程序所支持。「*.WAV」格式支持MSADPCM、CCITTALAW等多種壓縮演算法,支持多種音頻位數、採樣頻率和聲道,標準格式的WAV文件和CD格式一樣,44.1K的採樣頻率,速率88K/秒,16位量化位數,WAV格式的聲音文件質量和CD相差無幾,也是PC機上廣為流行的聲音文件格式。  
這裡順便提一下由蘋果公司開發的AIFF(AudioInterchangeFileFormat)格式和為UNIX系統開發的AU格式,它們都和和WAV非常相像,在大多數的音頻編輯軟體中也都支持它們這幾種常見的音樂格式。  
MP3  
MP3格式誕生於八十年代的德國,所謂的MP3也就是指的是MPEG標準中的音頻部分,也就是MPEG音頻層。根據壓縮質量和編碼處理的不同分為3層,分別對應「*.mp1」/「*.mp2」/「*.mp3」這3種聲音文件。需要提醒大家注意的地方是:MPEG音頻文件的壓縮是一種有損壓縮,MPEG3音頻編碼具有10:1~12:1的高壓縮率,同時基本保持低音頻部分不失真,但是犧牲了聲音文件中12KHz到16KHz高音頻這部分的質量來換取文件的尺寸,相同長度的音樂文件,用*.mp3格式來儲存,一般只有*.wav文件的1/10,而音質要次於CD格式或WAV格式的聲音文件。  
MP3格式壓縮音樂的採樣頻率有很多種,可以用64Kbps或更低的採樣頻率節省空間,也可以用320Kbps的標準達到極高的音質。用裝有FraunhoferIISMpegLyaer3的MP3編碼器(現在效果最好的編碼器)MusicMatchJukebox6.0在128Kbps的頻率下編碼一首3分鐘的歌曲,得到2.82MB的MP3文件。採用預設的CBR(固定採樣頻率)技術可以以固定的頻率採樣一首歌曲,而VBR(可變採樣頻率)則可以在音樂「忙」的時候加大採樣的頻率獲取更高的音質,不過產生的MP3文件可能在某些播放器上無法播放。把VBR的級別設定成為與前面的CBR文件的音質基本一樣,生成的VBRMP3文件為2.9MB。  
MIDI  
MIDI允許數字合成器和其他設備交換數據。MID文件格式由MIDI繼承而來。MID文件並不是一段錄製好的聲音,而是記錄聲音的信息,然後在告訴音效卡如何再現音樂的一組指令。這樣一個MIDI文件每存1分鐘的音樂只用大約5~10KB。今天,MID文件主要用於原始樂器作品,流行歌曲的業餘表演,遊戲音軌以及電子賀卡等。*.mid文件重放的效果完全依賴音效卡的檔次。*.mid格式的最大用處是在電腦作曲領域。*.mid文件可以用作曲軟體寫出,也可以通過音效卡的MIDI口把外接音序器演奏的樂曲輸入電腦里,製成*.mid文件。  
WMA  
WMA音質要強於MP3格式,更遠勝於RA格式,它和日本YAMAHA公司開發的VQF格式一樣,是以減少數據流量但保持音質的方法來達到比MP3壓縮率更高的目的,WMA的壓縮率一般都可以達到1:18左右,WMA的另一個優點是內容提供商可以通過DRM(DigitalRightsManagement)方案如WindowsMediaRightsManager7加入防拷貝保護。這種內置了版權保護技術可以限制播放時間和播放次數甚至於播放的機器等等,這對被盜版攪得焦頭亂額的音樂公司來說可是一個福音,另外WMA還支持音頻流(Stream)技術,適合在網路上在線播放,作為微軟搶佔網路音樂的開路先鋒可以說是技術領先、風頭強勁,更方便的是不用象MP3那樣需要安裝額外的播放器,而Windows操作系統和WindowsMediaPlayer的無縫捆綁讓你只要安裝了windows操作系統就可以直接播放WMA音樂,新版本的WindowsMediaPlayer7.0更是增加了直接把CD光碟轉換為WMA聲音格式的功能,在新出品的操作系統WindowsXP中,WMA是默認的編碼格式。WMA這種格式在錄製時可以對音質進行調節。同一格式,音質好的可與CD媲美,壓縮率較高的可用於網路廣播。
RealAudio  
RealAudio主要適用於在網路上的在線音樂欣賞,現在大多數的用戶仍然在使用56Kbps或更低速率的Modem,所以典型的回放並非最好的音質。有的下載站點會提示你根據你的Modem速率選擇最佳的Real文件。現在real的的文件格式主要有這麼幾種:有RA(RealAudio)、RM(RealMedia,RealAudioG2)、RMX(RealAudioSecured),還有更多。這些格式的特點是可以隨網路帶寬的不同而改變聲音的質量,在保證大多數人聽到流暢聲音的前提下,令帶寬較富裕的聽眾獲得較好的音質。  
近來隨著網路帶寬的普遍改善,Real公司正推出用於網路廣播的、達到CD音質的格式。如果RealPlayer軟體不能處理這種格式,它就會提醒你下載一個免費的升級包。  
VQF  
雅馬哈公司另一種格式是*.vqf,它的核心是減少數據流量但保持音質的方法來達到更高的壓縮比,*.vqf可以用雅馬哈的播放器播放。同時雅馬哈也提供從*.wav文件轉換到*.vqf文件的軟體。  
OGG  
ogg格式完全開源,完全免費,和mp3不相上下的格式。 

處理
  
一、音頻媒體的數字化處理
  
隨著計算機技術的發展,特別是海量存儲設備和大容量內存在PC機上的實現,對音頻媒體進行數字化處理便成為可能。數字化處理的核心是對音頻信息的採樣,通過對採集到的樣本進行加工,達成各種效果,這是音頻媒體數字化處理的基本含義。
  
二、音頻媒體的基本處理
  
基本的音頻數字化處理包括以下幾種:
  
不同採樣率、頻率、通道數之間的變換和轉換。其中變換隻是簡單地將其視為另一種格式,而轉換通過重採樣來進行,其中還可以根據需要採用插值演算法以補償失真。
  
針對音頻數據本身進行的各種變換,如淡入、淡出、音量調節等。
  
通過數字濾波演算法進行的變換,如高通、低通濾波器。
  
三、音頻媒體的三維化處理
  
長期以來,計算機的研究者們一直低估了聲音對人類在信息處理中的作用。當虛擬技術不斷發展之時,人們就不再滿足單調平面的聲音,而更催向於具有空間感的三維聲音效果。聽覺通道可以與視覺通道同時工作,所以聲音的三維化處理不僅可以表達出聲音的空間信息,而且與視覺信息的多通道的結合可以創造出極為逼真的虛擬空間,這在未來的多媒體系統中是極為重要的。這也是在媒體處理方面的重要措施。
  
人類感知聲源的位置的最基本的理論是雙工理論,這種理論基於兩種因素:兩耳間聲音的到達時間差和兩耳間聲音的強度差。時間差是由於距離的原因造成,當聲音從正面傳來,距離相等,所以沒有時間差,但若偏右三度則到達右耳的時間就要比左耳約少三十微秒,而正是這三十微秒,使得辨別出了聲源的位置。強度差是由於信號的衰減造成,信號的衰減是因為距離而自然產生的,或是因為人的頭部遮擋,使聲音衰減,產生了強度的差別,使得靠近聲源一側的耳朵聽到的聲音強度要大於另一耳。
  
基於雙工理論,同樣地,只要把一個普通的雙聲道音頻在兩個聲道之間進行相互混合,便可以使普通雙聲道聲音聽起來具有三維音場的效果。這涉及到以下有關音場的兩個概念:音場的寬度和深度。
  
音場的寬度利用時間差的原理完成,由於現在是對普通立體聲音頻進行擴展,所以音源的位置始終在音場的中間不變,這樣就簡化了我們的工作。要處理的就只有把兩個聲道的聲音進行適當的延時和強度減弱后相互混合。由於這樣的擴展是有局限性的,即延時不能太長,否則就會變為迴音。
  
音場的深度利用強度差的原理完成,具體的表現形式是回聲,音場越深,則迴音的延時就越長.所以在迴音的設置中應至少提供三個參數:迴音的衰減率、迴音的深度和迴音之間的延時。同時,還應該提供用於設置另一通道混進來的聲音深度的多少的選項。

3 Audio -聽覺

AudioAudio
Audio是聽覺的單詞。聽覺聲波作用於聽覺器官,使其感受細胞興奮並引起聽神經的衝動發放傳入信息,經各級聽覺中樞分析后引起的感覺。

聽覺形成過程

外界聲波通過介質傳到外耳道,再傳到鼓膜。鼓膜振動,通過聽小骨傳到內耳,刺激耳蝸內的毛細胞而產生神經衝動。神經衝動沿著聽神經傳到大腦皮層的聽覺中樞,形成聽覺。
  
聲源--耳廓(收集聲波)--外耳道(使聲波通過)--鼓膜(將聲波轉換成振動)--耳蝸(將振動轉換成神經衝動)--聽神經(傳遞衝動)--大腦聽覺中樞(形成聽覺)
  
聲波經外耳道傳到鼓膜,引起鼓膜振動,再經過聽骨鏈的傳遞而作用於前庭窗,引起前庭界外淋巴的振動,繼而振動窩管中的內淋巴,因而震動了基底膜和螺旋器。基底膜的振動以行波方式由基底膜底部向其頂部傳播,使該處螺旋器的毛細胞與蓋膜之間的相對位置發生變化,從而使毛細胞受刺激而產生微音器電位。後者激發而窩神經產生動作電位,並經聽神經傳入大腦皮層顳葉聽覺中樞,產生聽覺。
  
聲波經外耳道到達鼓膜,引起鼓膜的振動。鼓膜振動又通過聽小骨而傳達到前庭窗(卵圓窗),使前庭窗膜內移,引起前庭階中外淋巴振動,從而蝸管中的內淋巴、基底膜、螺旋器等也發生相反的振動。封閉的蝸窗膜也隨著上述振動而振動,其方向與前庭膜方向相反,起著緩衝壓力的作用。基底膜的振動使螺旋器與蓋膜相連的毛細胞發生彎曲變形,產生與聲波相應頻率的電位變化(稱為微音器效應),進而引起聽神經產生衝動,經聽覺傳導道傳到中樞引起聽覺。聽覺傳導道的第一級神經元位於耳蝸的螺旋神經節,其樹突分佈於耳蝸的毛細胞上,其軸突組成耳蝸神經,入橋腦止於延髓和腦橋
  
交界處的耳蝸核,更換神經元(第二級神經元)后,發出纖維橫行到對側組成斜方體,向上行經中腦下丘交換神經元(第三級神經元)後上行止於丘腦後部的內側膝狀體,換神經元(第四級神經元)后發出纖維經內囊到達大腦皮層顳葉聽覺中樞。當衝動傳至聽覺中樞則產生聽覺。另外,耳蝸核發出的一部分纖維經中腦下丘,下行終止於腦幹與脊髓的運動神經元,是聽覺反射的反射弧。
  
此外,聲音傳導除通過聲波振動經外耳、中耳的氣傳導外,尚可通過顱骨的振動,引起顳骨骨質中的耳蝸內淋巴發生振動,引起聽覺,稱為骨傳導。骨傳導極不敏感,正常人對聲音的感受主要靠氣傳導。
  
外耳和中耳擔負傳導聲波的作用,這些部位發生病變引起的聽力減退,稱為傳導性耳聾,如慢性中耳炎所引起的聽力減退。內耳及聽神經部位發生病變所引起的聽力減退。稱為神經性耳聾。某些藥物如鏈黴素可損傷聽神經而引起耳鳴、耳聾,故使用這些藥物時要慎重。

4 Audio -相關詞條

AVI

WMA

ASF

視覺

OGG

VQF

觸覺

味覺




5 Audio -參考資料

[1] 醫藥在線 http://www.cnm21.com/
[2] 世紀音頻 http://www.wavecn.com/

相關評論

同義詞:暫無同義詞