1解釋

X射線晶體學是一門利用X射線來研究晶體中原子排列的學科。更準確地說,利用電子對X射線的散射作用,X射線晶體學可以獲得晶體中電子密度的分佈情況,再從中分析獲得原子的位置信息,即晶體結構。(以下論述以高分子材料的X射線晶體學為主)由於所有的原子都含有電子,並且X射線的波長範圍為0.001-10納米(即0.01-100埃),其波長與成鍵原子之間的距離(1-2埃附近)可比,因此X射線可用於研究各類分子的結構。但是,到目前為止還不能用X射線對單個的分子成像,因為沒有X射線透鏡可以聚焦X射線,而且X射線對單個分子的衍射能力非常弱,無法被探測。而晶體(一般為單晶)中含有數量巨大的方位相同的分子,X射線對這些分子的衍射疊加在一起就能夠產生足以被探測的信號。從這個意義上說,晶體就是一個X射線的信號放大器。X射線晶體學將X射線與晶體學聯繫在一起,從而可以對各類晶體結構進行研究,特別是蛋白質晶體結構。

2研究方法

衍射數據收集
在獲得單晶之後,就需要進行衍射實驗,即用X射線打到晶體上,產生衍射,並記錄衍射數據。X射線的來源主要有兩種,一種是在常用X射線儀上使用的,通過高能電子流轟擊銅靶(或鉬靶),產生多個特徵波長的X射線,其中使用的CuKα的波長為1.5418Å;另一種就是利用同步輻射所產生的X射線,其波長可以變化。同步輻射X射線可以分為角散同步輻射(ADXD)和能散同步輻射(EDXRD)兩種,角散同步輻射的實驗原理與通常的X射線衍射儀是一樣的,不過波長更低(如0.6199Å),能量更高;而能散使用白光入射,即入射光具有連續波長,收集的衍射信號是在固定角度進行的,它的解析度較角散同步輻射低,技術要求也較低。現在國內的北京同步輻射實驗站(BSRF)已經升級成了角散的。
衍射數據(包括衍射點的位置和強度)的記錄多採用像板或CCD探測器。
晶體結構解析
由於晶體衍射實際上是晶體中每個原子的電子密度對X射線的衍射的疊加,衍射數據反映的是電子密度進行傅立葉變換的結果,用結構因子來表示。通過對結構因子進行反傅立葉變換,就可以獲得晶體中電子密度的分佈。而結構因子是與波動方程相關的,計算結構因子需要獲得波動方程中的三個參數,即波的振幅、頻率和相位。振幅可以通過每個衍射點的強度直接計算獲得,頻率也是已知的,但相位無法從衍射數據中直接獲得,因此就產生了晶體結構解析中的「相位問題(phase problem)」。
晶體結構解析中所採用的解決相位問題的方法有直接法和Patterson法。而對於解析生物大分子結構的主要方法有分子置換法、同晶置換法和反常散射法。

相關評論

同義詞:暫無同義詞